
Analyzing the Noise Robustness of Deep Neural Networks
Mengchen Liu∗, Shixia Liu∗, Hang Su†, Kelei Cao∗, Jun Zhu†

∗School of Software, TNList Lab, State Key Lab for Intell. Tech. Sys., Tsinghua University
†Dept. of Comp. Sci.Tech., TNList Lab, State Key Lab for Intell. Tech. Sys., CBICR Center, Tsinghua University

LC LD
FC FD

A

B

C

LE
(a) (b) (c)

IAIB

Figure 1: Explaining the misclassification of adversarial panda images. The root cause is that the CNN cannot detect panda’s ears in
the adversarial examples (FC), which leads to the failure of detecting a panda’s face (FD). As a result, these adversarial examples
are misclassified: (a) input images; (b) datapath visualization at the layer and feature map levels; (c) neuron visualization.

ABSTRACT

Deep neural networks (DNNs) are vulnerable to maliciously gen-
erated adversarial examples. These examples are intentionally de-
signed by making imperceptible perturbations and often mislead a
DNN into making an incorrect prediction. This phenomenon means
that there is significant risk in applying DNNs to safety-critical ap-
plications, such as driverless cars. To address this issue, we present a
visual analytics approach to explain the primary cause of the wrong
predictions introduced by adversarial examples. The key is to ana-
lyze the datapaths of the adversarial examples and compare them
with those of the normal examples. A datapath is a group of critical
neurons and their connections. To this end, we formulate the datap-
ath extraction as a subset selection problem and approximately solve
it based on back-propagation. A multi-level visualization consisting
of a segmented DAG (layer level), an Euler diagram (feature map
level), and a heat map (neuron level), has been designed to help ex-
perts investigate datapaths from the high-level layers to the detailed
neuron activations. Two case studies are conducted that demonstrate
the promise of our approach in support of explaining the working
mechanism of adversarial examples.

Keywords: Deep neural networks, robustness, adversarial exam-
ples, back propagation, multi-level visualization.

∗e-mail: {{liumc13,ckl17}@mails, shixia@mail}.tsinghua.edu.cn. S.
Liu is the corresponding author.
†e-mail: {suhangss,dcszj}@mail.tsinghua.edu.cn

1 INTRODUCTION

Deep neural networks (DNNs) have evolved to become state-of-
the-art in a torrent of artificial intelligence applications, such as
image classification and language translation [26, 29, 59, 60]. How-
ever, researchers have recently found that DNNs are generally vul-
nerable to maliciously generated adversarial examples, which are
intentionally designed to mislead a DNN into making incorrect pre-
dictions [34, 37, 53, 63]. For example, an attacker can modify an
image of a panda (IA in Fig. 1) slightly, even imperceptibly to human
eyes, and the generated adversarial example (IB in Fig. 1) is able
to mislead a state-of-the-art DNN [21] to classify it as something
else entirely (e.g., a monkey), because the DNN detects a monkey’s
face in the top right corner of the adversarial example (Fig. 11A).
This phenomenon brings high risk in applying DNNs to safety- and
security-critical applications, such as driverless cars, facial recogni-
tion ATMs, and Face ID security on mobile phones [1]. Hence, there
is a growing need to understand the inner workings of adversarial
examples and identify the root cause of the incorrect predictions.

There are two technical challenges to understanding and analyz-
ing adversarial examples, which are derived from the discussions
with machine learning experts (Sec. 3) and previous research on
adversarial examples [15, 34, 37]. The first challenge is how to
extract the datapath for adversarial examples. A datapath includes
the critical neurons and their connections that are responsible for the
predictions of the examples (Fig. 2 (a)). Disclosing the datapath will
help experts design more targeted defense approaches. However, in
a DNN, the neurons have complex interactions with each other [6].
Thus, it is technically demanding to disentangle these neurons from
the whole network and thus form the datapath. The second challenge
is how to effectively illustrate the inner workings of adversarial ex-
amples based on the extracted datapaths. A state-of-the-art DNN

usually contains hundreds of layers, with millions of neurons in each
layer [21]. Thus, an extracted datapath potentially contains millions
of neurons and even more connections. Directly visualizing all the
neurons and the corresponding connections in a datapath will lead
to excessive visual clutter.

To tackle these challenges, we have developed a visual analytics
tool, AEVis, to explain the root cause of the wrong predictions
introduced by adversarial examples. The key is to effectively extract
and understand the datapath of adversarial examples. We formulate
the datapath extraction as a subset selection problem, which is NP-
complete [12]. To analyze the adversarial examples in large DNNs,
we approximate the subset selection problem as an easy-to-solve
quadratic optimization by Taylor decomposition [45], and solve
the quadratic optimization using back-propagation [8]. Based on
the extracted datapaths, we design a multi-level visualization that
enables experts to effectively explore and compare datapaths from
the high-level layers to the detailed neuron activations. In particular,
at the layer-level, we design a segmented directed acyclic graph
(DAG) visualization to provide an overview of the datapaths (Fig. 1
(b)). As shown in Fig. 1 (c), the detailed neuron activations are
presented as heat maps that are familiar to machine learning experts
(neuron level). Between the layer level visualization and neuron
level, we have added a feature map level because a layer may contain
millions of critical neurons. A DNN, especially a convolutional
neural network (CNN), organizes neurons in feature maps, each of
which is a set of neurons sharing the same weight and thus detecting
the same feature. This inherent property enables the features to be
recognized regardless of their position in the input (e.g., an image)
and thus improves the generalization of DNNs [17]. At the feature
map level, we employ an Euler diagram to illustrate and compare
critical feature maps belonging to different datapaths. Two case
studies are conducted to demonstrate that our approach can better
explain the working mechanism of both white-box and black-box
adversarial examples.

The key technical contributions of this paper are:
• A visual analytics tool that explains the primary cause of the

wrong predictions introduced by adversarial examples.
• A datapath extraction method that discloses critical neurons

and their connections that are responsible for a prediction.
• A multi-level datapath visualization that enables experts to

examine and compare datapaths, from the high-level layers to
the detailed neuron activations.

In this paper, we focus on analyzing adversarial examples gener-
ated for CNNs on the task of image classification, because currently
most adversarial example generation approaches focus on attacking
CNNs on the image classification task [1] . Besides CNNs, AEVis
can be directly used to analyze other types of deep models, such as
multilayer perceptrons (MLPs).

2 RELATED WORK

2.1 Visual Analytics for Explainable Deep Learning
A number of visual analytics approaches [7, 27, 28, 33, 40, 41,
49, 57] have been developed to illustrate the working mechanism
of DNNs. A comprehensive survey on exploring the space of
interpretability interfaces was presented by Olah et al. [38]. Most
recent approaches on explainable deep learning can be categorized
into two groups: network-centric [29, 54, 57] and example-centric
approaches [20, 24].

Network-centric approaches focus on illustrating the network
structure of a DNN. Tzeng et al. employed a DAG visualization
to illustrate the neurons and their connections. In particular, each
neuron is represented by a node and their connections are repre-
sented by edges. Their method can illustrate the structure of a small
neural network, but suffers from severe visual clutter when visual-
izing state-of-the-art DNNs. To solve this problem, Liu et al. [29]
developed a scalable visual analytics tool, CNNVis, based on clus-

tering techniques. It helps machine learning experts to diagnose
a failed training process. Wongsuphasawat et al. [57] developed a
tool with a scalable graph visualization (TensorFlow Graph Visual-
izer) to present the dataflow graph of a DNN. To produce a legible
graph visualization, they apply a set of graph transformations that
converts the low-level dataflow graph to the high-level structure of
a DNN. The aforementioned approaches facilitate experts in better
understanding the network structure, but they are less capable of
explaining the predictions of individual examples. For example, the
TensorFlow Graph Visualizer developed by Wongsuphasawat et al.
[57] does not extract and disclose the datapath of a set of examples,
which is critical for identifying the root cause of the misclassification
produced by adversarial examples.

There are several recent attempts to explain how DNNs make pre-
dictions for examples (example-centric approaches). A widely used
approach is to feed a set of examples into a DNN, and visualize the
internal activations produced by the examples. For example, Hartley
et al. [20] developed an interactive node-link visualization to show
the activations in a DNN. Although this method is able to illustrate
detailed activations on feature maps, it suffers from severe visual
clutter when dealing with large CNNs. To solve this problem, Kahng
et al. [24] developed ActiVis to interpret large-scale DNNs and their
results. They employed a multiple coordinated visualization to facili-
tate experts in comparing activations among examples and reveal the
causes for misclassification. Although ActiVis can show the causes
for misclassification to some extent, it cannot be directly used to
illustrate the primary causes of the wrong prediction caused by ad-
versarial examples as it heavily relies on expert knowledge to select
which layer to examine. In addition, we argue that purely relying on
activations in one layer will result in misleading results (Sec. 6.1).
To solve this problem, we propose combining activations and gra-
dients for selecting critical neurons at different layers, which are
connected to form a datapath for the adversarial examples of interest.
In addition, we integrate a DAG visualization with dot plots, which
provide guided visual hints to help experts select the layer of interest.

2.2 Adversarial Attacks on Deep Learning

Adversarial attacks are a new research focus of DNNs [1]. Existing
efforts mainly focus on the generation of adversarial examples [34,
37] and how to defend against adversarial examples [11, 63].

The key of generating an adversarial example is to find a very
small perturbation that can mislead DNNs into misclassification. Re-
cently, researchers have proposed a variety of approaches for finding
such perturbations, including the Fast Gradient Sign Method [18],
universal adversarial perturbation [34], and DeepFool [35].

The generation of adversarial examples has inspired researchers
to develop several methods to defend against adversarial attacks.
A natural defense is training a DNN using adversarial examples
(adversarial training) [18, 53]. Although adversarial training can de-
fend the training adversarial examples, Moosavi-Dezfooli et al. [34]
discovered that new types of adversarial examples can be generated
to attack DNNs that have been trained in this way. To tackle this
issue, a more effective strategy is to change the network structure to
improve the defense against unseen adversarial examples. Adding
regularization to the corresponding layer(s) is one of the most com-
monly used methods for this. The typical regularization methods
include input gradient regularization [44] and layer-wise Lipschitz
regularization [11]. However, due to the limited understanding of
the working mechanism of adversarial examples, the above defense
strategies are often very heavy, which usually leads to performance
degradation for large, complex datasets such as ImageNet [46]. To
solve this problem, we have developed a visual analytics tool to
explain the primary cause of the wrong predictions introduced by ad-
versarial examples. Based on a few vulnerable neurons identified by
AEVis (Fig. 1A), machine learning experts can design more targeted
and effective defense strategies.

conv5_3..C

conv5_3: -0.0 199.9

1

Inputs Datapath Extraction

Datapath Visualization

+
Noise

Normal image

Adversarial example

DNN

Panda

Monkey

Normal image

Adversarial example

Feature map levelLayer level Neuron level

Class 1

Class n

...
...

Panda

Monkey

Class 1

Class n

...
...

... ...

DNN
(a)

(b)

A

B

PadO conv1C pool1P block1G block2G unit_1G unit_2G unit_3G

unit_4G unit_5G unit_6G unit_7G unit_8G unit_9G unit_10..G unit_11..G

unit_12..G unit_13..G unit_14..G unit_15..G unit_16..G unit_17..G unit_18..G unit_19..G unit_20..G

unit_21..G unit_22..G unit_23..G preactO

conv1C conv2C

shortcu..O

conv3C

addA

preactO

conv1C conv2C conv3C
addA

preactO conv1C conv2C conv3C
addA

postnor..O pool5P logitsO Spatial..O predict..O11/11 : giant pa..

11/11 : guenon, ..

resnet_v2_101/block4/unit_3/bo
ttleneck_v2/conv1:441

Activations

Learned feature
1

0.0 2.1

Figure 2: AEVis contains two modules: (a) a datapath extraction module and (b) a datapath visualization module that illustrates datapaths in
multiple levels: layer level, feature map level, and neuron level.

3 THE DESIGN OF AEVIS

3.1 Motivation
The development of AEVis is collaborated with the machine learning
team that won the first place in the NIPS 2017 non-targeted adver-
sarial attack and targeted adversarial attack competitions, which aim
at attacking CNNs [15, 51]. Despite their promising results, the
experts found that the research process was inefficient and incon-
venient, especially the explanation of the model outputs. In their
research process, a central step is explaining misclassification in-
troduced by adversarial examples. Understanding why an error has
been made helps the experts detect the weakness of the model and
further design a more effective attacking/defending approach. To
this end, they desire to understand the roles of the neurons and their
connections for prediction. Because there are millions of neurons in
a CNN, examining all neurons and their connections is prohibitive.
In the prediction of a set of examples, the experts usually extract
and examine the critical neurons and their connections, which are
referred to as datapaths in their field.

To extract datapaths, the experts often treat the most activated
neurons as the critical neurons [62]. However, they are not satisfied
with the current activation-based approach because it may result in
misleading results. For instance, considering an image with highly
recognizable secondary objects, which are mixed with the main
object in the image. The activations of the neurons that detect the
secondary objects are also large, however, the experts are not inter-
ested in them because these neurons are often irrelevant to the predic-
tion of the main object. Currently, the experts have to rely on their
knowledge to manually ignore these neurons in the analysis process.

After extracting datapaths, the experts examine them to under-
stand their roles for prediction. Currently, they utilize discrepancy
maps [64], heat maps [62], and weight visualization [18] to under-
stand the role of the datapaths. Although these methods can help
the experts at the neuron level, they commented that there lacked
an effective exploration mechanism enabling them to investigate the
extracted datapaths from high-level layers to individual neurons.

3.2 Requirement Analysis

To collect the requirements of our tool, we follow the human-
centered design process [9, 32], which involves two experts (E1
and E2) from the winning team of the NIPS 2017 competition. The
design process consists of several iterations. In each iteration, we
present the developed prototype to the experts, probe further re-
quirements, and modify our tool accordingly. We have identified
the following high-level requirements in this process. Among these
requirements, R2 and R3 are two initial requirements, while R1 and
R4 are gradually identified in the development.
R1 - Extracting the datapath for a set of examples of interest.
Both experts expressed the need for extracting the datapath of an
example, which serves as the basis for analyzing why an adversarial
example is misclassified. In a CNN, different neurons learn to
detect different features [62]. Thus, the roles of the neurons are
different for the prediction of an example. E1 said that analyzing
the datapath can greatly save experts’ effort because they are able
to focus on the critical neurons instead of examining all neurons.
Besides the datapath for individual examples, E1 emphasized the
need for extracting the common datapath for a set of examples of
the same class. He commented that the datapath of one example
sometimes is not representative for the image class. For example,
given an image of a panda’s face, the extracted datapath will probably
not include the neuron detecting the body of a panda, which is also
a very important feature to classify a panda.
R2 - Providing an overview of the datapath. In a large CNN, a
datapath often contains millions of neurons and connections. Di-
rectly presenting all neurons in a datapath will induce severe visual
clutter. Thus, it is necessary to provide experts an overview of a
datapath. E1 commented, “I cannot examine all the neurons in a dat-
apath because there are too many of them. In the examining process,
I often start by selecting an important layer based on my knowledge,
and examine the neurons in that layer to analyze the learned features
and the activations of these neurons. The problem of this method is
when dealing with a new architecture, I may not know which layer to

start with. Thus, I have to examine a bunch of layers, which is very
tedious.” Thus, it is necessary to provide the experts an overview of
the datapath with visual guidance to facilitates experts in selecting
the layer of interest. The requirement of providing an overview of a
CNN aligns well with previous research [24, 28, 57].
R3 - Exploring a datapath at the detailed levels. Although the
overview of a datapath facilitates experts in finding the layer of
interest, it is not enough to diagnose the root cause of the wrong
prediction introduced by an adversarial example. The experts said
that they wanted to link the overview of a datapath with detailed
neuron activations. This linkage helps them identify the most im-
portant neurons that lead to the misclassification. Since a layer
may contain millions of critical neurons, the experts also desired a
medium level between the layer level and neuron level. For CNNs,
the experts recommended to group neurons into feature maps. E2
said that, “Neurons in a feature map learn to detect the same feature.
Grouping them is very common in our research.” Previous research
also indicates that visual analytics for deep learning benefits from
multi-level visualization [24, 28].
R4 - Comparing multiple datapaths. An adversarial example is
often generated by slightly perturbing the pixel values of a normal
image. Accordingly, a normal image and the corresponding adver-
sarial example are nearly the same in the input space. However, their
prediction results are different. The experts are interested in how
they diverge to different predictions. For example, E2 commented,
“I want to know whether there are some critical ‘diverging points’
for the prediction difference or it is accumulated gradually layer by
layer through the network.” To this end, E2 desired to compare the
datapaths of normal examples and adversarial examples. Inspired
by E2, E1 added that it was interesting to compare the datapath of
an adversarial example (e.g., a panda image that is misclassified
as a monkey) with that of the images from the predicted class (e.g.,
normal images containing monkeys). Such comparison helps them
understand how these very different images “merge” into the same
prediction (e.g., the monkey). The need of visual comparison is
consistent with the findings of previous research [2, 16, 30].

3.3 System Overview

Driven by the requirements collected from the experts, we have
developed a visual analytics tool, AEVis, to illustrate the root cause
of the robustness issues caused by adversarial examples. This tool
consists of the following two parts.

• A datapath extraction module that extracts the critical neu-
rons and their connections for a set of selected examples (R1).

• A datapath visualization module that provides an overall
understanding of the datapath of interest (R2), illustrates data-
paths in multiple levels (R3), and facilitates experts to visually
compare several datapaths (R4).

As shown in Fig. 2, AEVis takes a trained CNN and the examples
to be analyzed as the input. The examples include both normal
examples (Fig. 2A) and adversarial examples (Fig. 2B). Given the
examples and the CNN, the datapath extraction module extracts the
critical feature maps and their connections that are responsible for
the predictions of the examples (Fig. 2 (a)). The extracted datapaths
are then fed into the datapath visualization module (Fig. 2 (b)),
which supports the navigation and comparison of the datapaths from
the high-level layers to the detailed neuron activations.

A typical analysis workflow of AEVis is shown in Fig. 1. An
expert explores the image list (Fig. 1 (a)) and selects several groups
of images for further understanding and analysis. After clicking
on the ‘Analyze’ button, AEVis first provides an overview of the
datapaths at the layer level (Fig. 1 (b)). At the layer level, each
rectangle represents a layer group and a dot plot is combined with
each layer group to illustrate the similarities between/among the
extracted datapaths of the layers in each layer group. By examining
the dot plots, the expert is able to detect layers of interest and further

(b)(a)

Activation

Neurons

8.69

7.73

Activation
heat map

Learned
feature

...

neuron 1

neuron 2

Figure 3: A misleading result of the activation-based datapath extrac-
tion approach: (a) the input image; (b) the top 2 critical neurons found
by the activation-based approach. The learned feature is computed
by the discrepancy maps [64] and the activation heat map show the
activations on the corresponding feature map.

examines the feature maps in the layer (LC and LD in Fig. 1). In
each layer, the Euler-diagram-based design helps the expert focus
on the share/unique feature maps of several datapaths. Aided by
this design and the color coding (e.g., activations) of feature maps,
the expert can select a feature map of interest (FC and FD in Fig. 1),
and explore the detailed neuron activations as well as the learned
features of the neurons in this feature map (Fig. 1 (c)). It facilitates
him/her in finding the root cause (e.g., a set of neurons) for the
misclassification of the adversarial examples.

4 DATAPATH EXTRACTION

4.1 Motivation and Problem Formulation
Extracting the datapath that are responsible for the prediction of
a group of examples is the basis for analyzing why an adversarial
example is misclassified (R1). The key challenge is to identify the
critical neurons as selecting the corresponding connections to form
the datapath is straightforward. Next we discuss how to extract
the critical neurons for an individual example and then extend our
approach to selecting critical neurons for a set of examples.

A commonly used method is to treat the most activated neurons
as the critical neurons [7, 24]. However, this method may result in
misleading results, especially when a highly recognizable secondary
object is mixed with the main object in an image. For example,
Fig. 3 shows the top 2 critical neurons found by such activation-
based approach for a sheepdog image (Fig. 3 (a), employed network:
ResNet-101 [21], image label: Shetland sheepdog). We can see that
the second highly activated neuron learns to detect the head of a
dog (Fig. 3 (b)), which is indeed critical for classifying a sheepdog.
However, the most critical neuron learns to detect a ball (Fig. 3 (b)),
which is not an important feature for classifying a sheepdog. Such a
misleading result roots in that the neurons have complex interactions
with each other and the activations of the neurons are processed by
a highly nonlinear function to generate the final prediction. Thus,
highly activated neurons may not be the critical neurons for a predic-
tion. Such critical neurons are the neurons that highly contributed
to the final prediction. In other word, by only combining the con-
tributions of the critical neurons, the prediction of an example will
not be changed. To this end, we aim at selecting a minimized subset
of neurons, which keep the original prediction. Accordingly, we
formulate critical neurons extraction as a subset selection problem:

Nopt = argmin
Ns⊆N

(p(x)− p(x;Ns))
2 +λ |Ns|2. (1)

The first term is to keep the original prediction and the second term
ensures to select a minimized subset of neurons. Specifically, N is
the set of the neurons in a CNN, Ns is a subset of neurons N, Nopt is
the calculated critical neurons, p(x) is the prediction of example x,
and p(x;Ns) is the prediction if we only consider the neuron subset
Ns. To measure the difference between two predictions, we adopt

the widely used L2-norm. |Ns| is the size of Ns and λ is used to
balance the two terms. A larger λ indicates a tendency to select a
smaller subset of neurons.

As discussed in Sec. 3.2, extracting the common datapath for
a set of examples instead of an individual example can improve
the representativeness of the extracted datapath (R1). A natural
extension of Eq. (1) is minimizing the sum of the difference in the
prediction of the example set X :

Nopt = argmin
Ns⊆N

∑
xk∈X

(p(xk)− p(xk;Ns))
2 +λ |Ns|2. (2)

Next, we discuss how to effectively solve this problem. For simplic-
ity, we take Eq. (1) (critical neurons for one example) as an example
to illustrate the solution.

4.2 Solution to Subset Selection
Directly solving the subset selection problem (Eq. (1)) is time-
consuming because: (1) it is an NP-complete problem and (2) the
search space is prohibitively large due to the large number of neurons
in a CNN. We therefore combine a divide-and-conquer approach
with a quadratic optimization to reduce the search space and find
a more accurate approximation. In particular, we develop a divide-
and-conquer-based search space reduction method by splitting the
subset selection problem into a series of separate subproblems and
grouping the neurons into feature maps. As each subproblem is
still NP-complete, we then employ the quadratic approximation
to more accurately approximate each NP-complete subproblem as an
easy-to-solve quadratic optimization by Taylor decomposition [45],
and solve it based on back-propagation [8].

4.2.1 Search space reduction
A CNN is traditionally represented as a directed acyclic graph
(DAG), where each node represents a neuron and each edge de-
notes a connection between nodes. A widely-used approach to
accelerate DAG-related algorithms is processing the nodes layer
by layer [31, 50]. Inspired by these algorithms, we split the
original subset selection problem (Eq. (2)) into a set of subprob-
lems. Each selects the critical neurons in one layer: Ni

opt =

argmin(p(x)− p(x;Ni
s∪N−i))2+λ i|Ni

s|2, where Ni
s ⊆Ni, Ni is the

set of the neurons in layer i, and N−i is the set of all other neurons
in the CNN except the ones in layer i. After solving all the subprob-
lems, we aggregate all the sub-solutions Ni

opt into the final critical
neuron set Nopt =

⋃
i

Ni
opt .

Although dividing the original problem into a set of subprob-
lems can largely reduce the search space, the search space of each
subproblem is still large because a layer may contain more than
one million neurons. Thus, we group neurons into a set of feature
maps to further reduce the search space. In a CNN, neurons in a
feature map share the same weights, and thus learn to detect the
same feature. Utilizing this characteristics, we formulate the feature
map selection problem as

F i
opt = argmin

F i
s⊆F i

(p(x)− p(x;F i
s ∪F−i))2 +λ

i|F i
s |2, (3)

where F is the set of feature maps in a CNN, F i is the set of the
feature maps in layer i, F i

s is a subset of F i, and F−i is the set of all
other feature maps in the CNN except the ones in layer i.

4.2.2 Quadratic Approximation
Although we have reduced the search space from millions of di-
mensions (neurons in a layer) to thousands of dimensions (feature
maps in a layer), it is still time-consuming to solve Eq. (3) be-
cause it is an NP-complete discrete optimization problem. To tackle

this issue, we transform the discrete optimization into a continu-
ous optimization problem. In particular, we reformulate Eq. (3) as:
zi

opt = argmin(p(x)− p(x;zi))2+λ i(∑ j zi
j)

2, where zi = [zi
1, ...,z

i
n]

and zi
j ∈ {0,1} is an indicator to represent whether the j-th feature

map in layer i is critical. If the feature map is critical, zi
j = 1, other-

wise, zi
j = 0. Inspired by spectral clustering [36], we approximate

the discrete optimization with a continuous optimization by remov-
ing the discreteness condition zi

j ∈ {0,1} and allowing zi
j to take a

value in [0,1]:

zi
opt = argmin

zi
j∈[0,1]

(p(x)− p(x;zi))2 +λ
i(∑

j
zi

j)
2, (4)

Eq. (4) can be solved using gradient-based numer-
ical optimization approaches such as the BFGS
(Broyden−Fletcher−Goldfarb−Shanno) algorithm [58]. The
gradient ∂ p/∂ zi

j is calculated by back-propagation [8]. However,
this method is computationally expensive because the gradient-based
optimization is an iterative process where we have to calculate the
gradients ∂ p/∂ zi

j at each iteration. According to the calculation
process of back-propagation, the deeper a CNN is, the longer it
takes to compute the gradients.

To tackle this issue, we approximate Eq. (4) as a quadratic
optimization where we calculate the gradients only once. Since
p(x) = p(a1, ...,an) and p(x;zi) = p(zi

ja1, ...,zn
j an), we rewrite

Eq. (4) as a multivariate function. Here a j is the activation vector
of the j-th feature map produced by example x. We then the Taylor
decomposition [45] is to decompose p(x)− p(x;zi) into a linear

form: p(x)− p(x;zi) ≈ ∑
j
(1− zi

j)a j · ∂ p
∂ai

j

∣∣∣∣
a
, where a = [ai

1, ...,a
i
n]

and x ·y represents dot product between vectors x and y. By substi-
tuting the above decomposition into Eq. (4), we obtain a quadratic
optimization:

zi
opt = argmin

zi
j∈[0,1]

zi(Qi +λ
iI)(zi)T −2qqi · zi, (5)

where qi = [ai
1 ·

∂ p
∂ai

1

∣∣∣
a
, · · · ,ai

n ·
∂ p
∂ai

n

∣∣∣
a
], q is the sum of qi,

Q = (qi)T qi is a n× n matrix, and I is a n× n identity matrix.
Solving Eq. (5) only needs to evaluate the gradients once. We use
the BFGS algorithm to solve Eq. (5). To control the scale of the two
terms, the parameter λ i is set to 0.1/|F i|2, where |F i| is the number
of the feature maps in layer i.

In the same way, we obtain a solution for selecting critical feature
maps for a set of examples (Eq. (2)). Compared with Eq. (5), there
are two differences: (1) replacing Qi by ∑Qi

k and (2) replacing qqi

by ∑qkqi
k, where k is the index of the example in the example set.

5 DATAPATH VISUALIZATION

An extracted datapath usually contains millions of neurons and even
more connections, which prohibits experts from efficiently examin-
ing the datapath layer by layer. To help experts effectively explore
the extracted datapaths, we design a multi-level datapath visual-
ization, which enables experts to analyze and compare datapaths
from high-level layers to detailed neuron activations (R2, R3, R4).
Based on our discussions with the experts, we visualize datapaths
on three levels: the layer level, the feature map level, and the neuron
level. At each level, we (1) calculate the layout of the items (layers,
feature maps, neurons) to reveal the relationships among them; and
(2) provide visual hints to guide experts in finding the item(s) of
interest and zooming in to a more-detailed level (e.g., from the layer
level to the feature map level).

addA

preactO conv1C conv2C conv3C
addA

preactO conv1C

conv2C conv3C
addA postnor..O pool5P logitsO Spatial..O predict..O

A
(b)

(a) PadO conv1C pool1P block1G block2G unit_1G unit_2G unit_3G

unit_4G unit_5G unit_6G unit_7G unit_8G unit_9G unit_10..G unit_11..G

unit_12..G unit_13..G unit_14..G unit_15..G unit_16..G unit_17..G unit_18..G unit_19..G unit_20..G

unit_21..G unit_22..G unit_23..G preactO

conv1C conv2C

shortcu..O

conv3C

addA

preactO

conv1C conv2C conv3C
addA

preactO conv1C conv2C conv3C
addA

postnor..O pool5P logitsO Spatial..O predict..O

Expand
Gunit_2G unit_3G unit_4Gunit_1G

Figure 4: Segmented DAG visualization: (a) showing 49 layers of
ResNet101 simultaneously; (b) the segmentation result calculated by
only considering the empty space at the end of each segment.

5.1 Layer-level Visualization
The layer-level visualization provides an overview of the extracted
datapath, and guides experts in selecting a layer to examine (R2).
Layout. At the layer level, we focus on illustrating how layers
are connected. Initially, we employ the widely-used TensorFlow
Graph Visualizer [57]. In particular, we formulate a CNN as a
DAG (directed acyclic graph), where each layer is a node and the
connections between layers are edges. Based on this formulation,
a node-link diagram with a vertical layout is employed to visualize
the layers and their connections. Then the DAG layout algorithm
in [50] is employed to calculate the position of each layer. To handle
large CNNs, a hierarchy of the layers is built, where each leaf node
is a layer and each non-leaf node is a layer group [57].

The experts were overall satisfied with this design, but after they
tried the prototype they commented that they often need to zoom
in to the lower levels of the layer hierarchy in order to analyze the
root cause of a misclassification. It is tedious for them to zoom in
for each adversarial example. In addition, when they zoom in to
the lower levels, the visualization often suffers from a long skinny
strip with a very high aspect ratio (e.g., Fig. 8 (a) in [57]). This
phenomenon is worse when they analyze state-of-the-art CNNs,
such as ResNet [21] with 50-200 layers.

To solve the above problems, we combine a treecut algorithm and
a segmented DAG visualization to save experts’ efforts and generate
a layout with a better aspect ratio, respectively.
Treecut. To save experts’ efforts of zooming in, we use a treecut
algorithm [13] to select an initial set of layers (around 50 layers)
from the layer hierarchy. In this algorithm, the DOI measures the
datapath difference between two sets of images (e.g., adversarial
examples and normal examples).
Segmentation. Inspired by the segmented timeline [10], we propose
transposing the vertical layout into a horizontal layout, segmenting
the initial DAG into several parts, and visualizing the segmented
parts from top to bottom. The experts commented that this horizontal
design resembles a calendar and thus is familiar to them. As shown
in Fig. 4 (a), our segmented DAG visualization effectively illustrates
the connections among dozens of layers with good aspect ratios.

The key challenge of segmenting a DAG is to decide where to
segment it. We formulate the segmentation problem as a “printing
neatly” problem [12], in which we aim to minimize the cost function
that sums up the empty space at the end of each line while ensuring
that no word is off screen. This optimization method is suitable
for a CNN with a chain structure, such as VGG net [47]. However,
state-of-the-art CNNs (e.g., ResNet [21], and DenseNet [22]) often
contain basic building blocks, whose layers can split and merge (e.g.,
Fig. 4A). These building blocks are often connected with others

as a chain. Directly minimizing the above cost function may cut
the basic building blocks apart, which hinders the understanding of
the network structure (Fig. 4 (b)). To solve this problem, we add a
regularization term to the cost function to penalize a segmentation
scheme that cuts a building block into two parts:

min
ei≥0

k−1

∑
i=1

ei +λci, (6)

where k is the number of segments, ei is the empty space at the
end of segment i, ci represents whether a building block is cut by
segment i, and λ is used to balance the two terms. In AEVis, experts
can interactively modify λ . Eq. (6) can be efficiently solved using
dynamic programming. As shown in Fig. 4, if we only consider the
empty-space objective, building block A will be cut into two parts
(Fig. 4 (b)). Adding the regularization term can avoid unnecessary
cuts by balancing between the small empty space and the protection
of the building blocks (Fig. 4 (a)).

block1

0.0 1.0

Figure 5: A dot plot as
the visual hint for layer
selection.

Visual hint. Showing how the layers
are connected is not enough in guid-
ing experts to find the layer of inter-
est. Thus, for each node (a layer or
layer group) in the segmented DAG, we
provide a visual statistical description
of the datapath(s) in that layer (group).
Because there is limited space for each
node and a layer group usually contains
dozens of layers, we employ a dot plot
as the visual hint, which is a compact
visualization and widely used for relatively small datasets [56]. In
particular, in a dot plot, each dot represents a high-level statistics of
a layer (Fig. 5). The position of a dot on the x-axis denotes the value
of the high-level statistics of the datapath(s) in that layer, such as the
activation similarity between two datapaths (the datapath for adver-
sarial examples and the one for normal examples). In particular, the
activation similarity is calculated as ∑sim(Ii

A, I
i
N)/N, where sim(., .)

is the widely-used cosine similarity, Ii
A, I

i
N is a pair of adversarial

and normal examples, and N is the number of such pairs in the
examples. Other high-level statistics include the averaged activa-
tions of an example set on the corresponding datapath in that layer
and the topological similarity between two datapaths (measured by
Jaccard similarity). Examining the dot plots node by node helps
experts detect the “diverging point,” where a normal image and its
corresponding adversarial example diverge into different predictions
(Fig. 10). Experts are able to examine the feature maps in the layer
group of interest (Fig. 1) or expand it to examine child layers or
layer groups (Fig. 4 (a)).

5.2 Feature-map-level Visualization
When an expert detects a layer of interest, he/she then zooms in
to the layer to examine the critical feature maps in that layer. To
preserve the analysis context, we visualize the feature maps in the
selected layer as the focus and other layers are shown as context.
(Fig. 1 (b)).
Layout. The belonging relationships between the feature maps and
the extracted datapaths in one layer, including the unique feature
maps of each datapath and the shared ones between/among them,
are very useful for understanding the roles of these feature maps. As
finding unique/share elements based on their set (datapath) mem-
bership is an important task tackled by the set visualization [4], we
then formulate the feature map layout problem as a set visualization
problem. Among various set visualization techniques, such as the
Euler diagram, the line-based techniques (e.g., LineSets [3]), and the
matrix-based techniques (e.g., ConSet [25]), we decide to employ
on the Compact Rectangular Euler Diagram [42] (ComED) because:

• It can well depict set relations and thus disclose the
unique/share feature maps [4];

• Machine learning experts are familiar with Euler diagrams and
they often use them to understand the set relationships;

• The number of feature maps in each datapath is clearly con-
veyed in the Euler diagram, which is important for the analysis.

As in ComED [42], we split the datapaths in the layer of interest
by their intersection relations. This produces a hierarchy, which is
visualized by non-overlapping rectangles (Fig. 1LC). Then the split
parts of datapaths are connected with lines, which can be shown on
demand. Compared with ComED, we make two modifications to
reduce visual clutter and better facilitate experts’ visual comparison:

• Utilize K-Means [8] to cluster the feature maps by their acti-
vations to reduce the visual clutter caused by a large number
of feature maps (Fig. 6). Experts can interactively modify the
parameters of the clustering (e.g., the number of the clusters k)
to reduce the parameter sensitivity.

• Use the Treemap layout instead of the graph layout because
the graph layout result has an irregular boundary, which is
not suitable for juxtaposing multiple layers to compare the
datpaths in them (Fig. 1LC and LD).

1 FM 2-9 FMs

10-99 FMs

...

-1.0 1.0

Figure 6: The visual
hints for a feature
map cluster. FM is
short for feature map.

Visual hint. Although the Euler-
diagram-based design reveals the
shared/unique feature maps very well, it
does not significantly help to efficiently
select an individual feature map cluster
of interest for further examination. To
this end, for each cluster, we illustrate
its average importance (zi

j in Eq. (4),
Sec. 4) or average activation, because
experts usually start their analysis
from the most critical or most highly
activated feature maps. The averaged
importance/activation of a feature map
cluster is encoded by the color of the fea-
ture map cluster (Fig. 6). In addition to
importance/activation, we also encode the size of a feature map clus-
ter because it is a basic information for a cluster. We employ a series
of stacked rectangles to represent a feature map cluster (Fig. 6), and
use the number of stacked rectangles to encode the size of a cluster.
To avoid the visual clutter caused by a large number of stacked rect-
angles, the number of rectangles NR is proportional to the log of the
cluster size NC: NR = log10(NC)+1. For the sake of consistency, a
cluster with only one feature map in it is shown as a single rectangle.

5.3 Neuron-level Visualization
When an expert finds a feature map of interest, AEVis allows him/her
to examine the neurons in that feature map. As there are hundreds or
even thousands of neurons in a feature map and dozens of images are
often analyzed simultaneously, we cannot show all the activations in
place due to the limited space. Thus, we add a neuron panel (Fig. 1
(c)) to show the neurons. To preserve the visual link [48] of the
selected feature map and the corresponding neurons, we add the
same label to the feature map and the neurons (Fig. 7A).
Layout. In a feature map, the neurons are naturally organized on a
grid. The position of a neuron is determined by the position of the
image patch that influences the activation of this neuron [17].
Visual hint. Following previous research [7, 29], we employ the
learned features of neurons and the activations of the neurons to help
expert understand the roles of the neurons for the prediction.

The activation of a neuron is represented by its color (red: nega-
tive activation; green: positive activation). Combining the color cod-
ing and the grid-based layout of neurons, experts can detect which
part of the image highly activates the neurons in the feature map. For
example, in Fig. 7, we can find the neurons on the top right corner are
highly activated, which corresponds to the panda head in the image.

To visualize the learned features of neurons, we first try the
method used in previous papers on explainable deep learning [7, 29].

This method selects the image patches that highly activate a neuron
to represent its learned feature. However, we discovered that when
handling very deep CNNs (e.g., ResNet101 [21]), this method cannot
illustrate the exact region in each image patch that highly activates a
feature map neuron, especially for the neurons in top layers. This is
because the activations of neurons in top layers of a very deep CNN
are influenced by a large image patch. For example, the neurons in
more than at layer 10 and deeper are influenced by all the pixels in
an image in ResNet101. Thus, we employ the discrepancy map [64]
to highlight which region in the image actually highly activates a
neuron and treat this region as the learned feature of this neuron. To
calculate the discrepancy map for a neuron, Zhou et al. [64] occluded
a very small patch of an image (8 pixels× 8 pixels), and calculated
the new activation of the neuron produced by the occluded image.
If the activation changes a great deal, the small patch is marked as
important. This process iterates many times, and for each iteration,
a different patch is checked. After this process, all the important
small patches of the image remain unchanged and other pixels are
deemphasized by lowering their lightness. For example, in Fig. 7,
by examining the discrepancy maps, we found that the neurons in
the selected feature map learned to detect a panda head. Without
detecting the important region, we may draw the wrong conclusion
that the neurons learned to detect a whole panda.

1

Feature
map

Neurons in a feature map

B

A
(a)

(b)

Image

Figure 7: Neuron-level visualization: (a) the learned feature is shown
as discrepancy maps; (b) activations are shown as a heat map.

6 EVALUATION

As part of our evaluation, we first performed a qualitative evaluation
to demonstrate the effectiveness of the datapath extraction algorithm.
Then, two case studies were conducted to illustrate how AEVis
helps the experts E1 and E2 analyze both white-box and black-box
adversarial examples.

6.1 Qualitative Analysis of Datapath Extraction

Top 5 critical feature maps
1 5Image 2 3 4

(a)

(b)

(c)

Figure 8: Critical feature maps extracted by our approach for a sheep-
dog image: (a) the input image; (b) top 5 the critical feature maps; (c)
activation heat maps of the neurons in feature map 4 on two examples.

Feature maps
Most critical Less criticalExamples

......

......

A C D E

F

B H

J

IG

Figure 9: Comparison between the extracted datapath for one exam-
ple and a set of examples.

Datapath extraction for a single example. Fig. 8 shows the top 5
critical feature maps extracted by our approach for the same image
in Fig. 3. Feature maps 1,2,3 and 5 (Fig. 8 (b)) learn to detect the
features of dog ears, head, etc. These features are indeed important
to classify a Shetland sheepdog. Compared with the activation-
based approach, our approach is able to ignore the irrelevant feature
map that learns to detect a ball (Fig.3 (b)). Besides these easy-to-
understand feature maps, the learned feature of feature map 4 (Fig 8
(b)) is difficult to understand at first glance. To understand what this
feature map actually learns, we calculate a set of discrepancy maps
(Fig 8 (b)). A common property of these discrepancy maps is that
they have white stripes with black strokes. Thus, we conclude that
this feature map learns to detect such a feature. However, it is still
unclear why this feature map is considered critical in classifying
a sheepdog. To answer this question, we loaded more sheepdog
images. We found that a distinctive feature of a sheepdog was
a white strip between its two dark-colored eyes. This feature was
ignored by us at first because it is not obvious in the original example
(Fig. 8 (a)). To verify our assumption, we further visualized the
activations on the feature map (Fig. 8 (c)) and found that this feature
map was indeed highly activated by the white strip in the images of
sheepdogs. Our experts were impressed with this finding, because
the datapath extraction algorithm not only finds a commonsensical
feature map, but also finds unexpected feature map(s).
Comparison between the extracted datapaths for one example
and a set of examples. As shown in Fig. 9, we compared the
extracted datapath for an image with only one panda face (Fig. 9A)
with the one for a set of images that contain both panda faces and
whole pandas (Fig. 9B).

We found that the most critical feature maps extracted for an
image with only one panda face contain the feature maps that detect
a panda face (Fig. 9C and D) and important features on a panda face,
such as eyes and ears (Fig. 9E). The neuron in the blue rectangle
(Fig. 9E) was unexpected at first glance. After examining more
discrepancy maps for that feature map and the activation heat map
(Fig. 9F), we discovered that the feature map learned to detect black
dots. Such a feature is a recognizable attribute of a panda face.

Just like the datapath of a panda’s face, the datapath extracted
for a set of panda images includes the feature maps for detecting
a panda face (Fig. 9G and H). In addition to these feature maps,
the most critical feature maps include a feature map for detecting
the black-and-white body of a panda (Fig. 9I), which is also
an important feature for classifying a panda. We visualized the

activations on this feature map to verify that the feature map indeed
learns to detect a panda body (Fig. 9J).

This finding echoes requirement R1 in Sec. 3.2, i.e., that the
extracted critical feature maps for one example may not be represen-
tative for a given set of images with the same class label.

6.2 Case Study

There are two main types of adversarial attacks: white-box attack
and a black-box attack [1]. The white-box attack means that the
attacker has a full knowledge of the target model, including the
parameters, architecture, training method, and even the training data.
While the Black-box attack assumes that the attacker knows nothing
about the target model, which can be used to evaluate the transfer-
ability of adversarial examples. Next, we demonstrate how AEVis
helps experts E1 and E2 analyze both white-box and black-box ad-
versarial examples. In both case studies, we utilized the dataset that
is from the NIPS 2017 non-targeted adversarial attack and targeted
adversarial attack competitions [51], because the experts are familiar
with this dataset. It contains 1,000 images (299 pixel × 299 pixel)
We employed the white-box non-targeted attacking method devel-
oped by the winning machine learning group [14, 15] to generate
one adversarial example for each image in the dataset.

6.2.1 Analyzing White-Box Adversarial Examples

Model. One of the state-of-the-art CNNs for image classification,
ResNet101 [21], is employed as the target model. It contains 101
layers. We used the pre-trained model from TensorFlow [19]. It
achieves a high accuracy (96.3%) on the normal examples, and a
very low accuracy (0.9%) on the generated adversarial examples.

PadO conv1C pool1P block1G block2G unit_1G unit_2G unit_3G

unit_4G unit_5G unit_6G unit_7G unit_8G unit_9G unit_10..G unit_11..G

unit_12..G unit_13..G unit_14..G unit_15..G unit_16..G unit_17..G unit_18..G unit_19..G unit_20..G

unit_21..G unit_22..G unit_23..G preactO

conv1C conv2C

shortcu..O

conv3C

addA

preactO

conv1C conv2C conv3C
addA

preactO conv1C conv2C conv3C
addA

postnor..O pool5P logitsO Spatial..O predict..O11/11 : giant pa..

11/11 : guenon, ..

LA

LB LC LD LE

LF

Figure 10: The datapath overview illustrating the activation differences
between the datapaths of the adversarial examples and normal
examples.

Analysis process. To start the analysis, we calculated an adversarial
score for each image [39]. A high score means the image is most
probably to be an adversarial example. The expert E1 then focused
on the most uncertain images with medium adversarial scores. After
examining these uncertain adversarial examples, E1 selected one
for further investigation (IB in Fig. 1). It contains a panda head
but is misclassified as a guenon monkey. To understand the root
cause of this misclassification, he wanted to compare its datapath
with the one of the corresponding normal example (IA in Fig. 1).
To improve the representativeness of the extracted datapath for
the normal example (Sec. 6.1, Fig. 9), he added 10 more normal
panda images as well as the corresponding adversarial examples,
to the images of interest (R1). Each added adversarial example
is misclassified as a guenon monkey. Accordingly, E1 split these
images into two sets. The first set (adversarial group) contained
11 adversarial examples. The second set of images (normal group)
contained 11 normal examples. Then he extracted and visualized
the datapaths for these two sets of images.

conv1C

conv1: -0.0 16.9

1

predict..O

(a)

(b)

(c)

(d)A(e)
Normal

Adversarial

Figure 11: Explanation of why the adversarial panda image is misclas-
sified as a monkey. The CNN erroneously detects a monkey’s face:
(a) input images; (b) feature maps; (c) neurons; (d) learned feature;
and (e) adversarial example.

The datapath overview is shown in Fig. 10. The dot plots encoded
the activation similarity between these two datapaths. The expert
E1 found that at the bottom layer of the network (Fig. 10LA), the
activation similarity is almost 1.0 (the dot is on the right). This
similarity remained to be 1.0 until layer LB in Fig. 10. After layer
LB, layer LC appeared as a “diverging point”, where the activation
similarity largely decreased (R4). In the following layers, the ac-
tivation similarity continued decreasing to 0 (LD, LE , LF), which
resulted in the misclassification.

To analyze which feature map is critical for the divergence, the
expert E1 expanded the diverging point LC (Fig. 1). In addition, he
set the color coding of each feature map as the activation difference
between two sets of examples (activation difference = activations
of normal images − activations of adversarial examples). A large
activation difference indicates that the corresponding feature map
detects its learned feature in the normal images but did not detect
such a feature in the adversarial examples. Because the feature
map FC in Fig. 1 shows the largest activation difference, he then
checked its neurons. By examining the learned feature of the neurons
(Fig. 1A), he discovered that the neurons learned to detect a black
patch that resembles a panda’s ear (Fig. 1B and C). Such a feature
is critical for detecting a panda’s face, which does not appear in
the adversarial example. To further investigate the influence of this
feature map, E1 continued to expand the next layer (layer LD). He
found that there was a large activation difference on the feature map
for detecting a panda’s face (FD in Fig. 1). This indicates that the
corresponding feature map, FD, fails to detect a panda’s face, which
is a direct influence of the large difference on FC. By the same
analysis, E1 found that in the layer that detected the highest-level
features (LE), there was also a large activation difference on the
feature map for detecting a panda’s face. As the target CNN cannot
detect a panda’s face in highest-level features, the CNN failed to
classify the adversarial example as a panda image.

The above analysis explains why the CNN failed to classify the
adversarial example as a panda, but cannot explain why the adver-
sarial example is classified as a monkey. Thus, E1 compared the
adversarial example with the corresponding example and a set of
normal monkey images (Fig. 11 (a)). Inspired by the above analysis,
E1 directly expanded layer LC (diverging point), and examined its
feature maps (Fig. 11 (b)). After checking the activations of the
adversarial example on the “monkey’s datapath”, the expert found
that the activations were the largest on the feature map for detecting
the face of a monkey (Fig. 11 (c) and (d)). This behavior of the

FM 1588:
Wheel

FM 1672:
Racket

Activation of the
normal example

Activation of the
adverarial example

Learned feature

(b)

(c)

D

Adversarial example Normal examples from the traning set

(a)

A B

C

Figure 12: Explanation of why the adversarial cannon image is mis-
classified as a racket: (a) the adversarial example image; (b) normal
examples from the training set; (c) the learned features and activations
of neurons in the layer LE in Fig. 10.

CNN was unexpected because there was no monkey face in the
adversarial example at first glance. Thus, E1 examined the detailed
neuron activations on this feature map and discovered that the high
activations appeared in the top right corner of the neurons, which
corresponded to the top right corner of the image (Fig. 11 (e)). E1
did not understand why the CNN detected a monkey face at that part
of the image. By carefully examining the adversarial example and
the learned features of the neurons, he finally figured out the reason:
there is a dark strip with a bright strip on each side (Fig. 11A). It is a
recognizable attribute for the face of a guenon monkey, which made
the CNN mispredict the adversarial example as a monkey.

Another case is shown in Fig. 12, where a cannon image is mis-
classified as a racket (probability: 0.997). The reasons behind the
misclassification are two-fold. First, the CNN recognizes a large
wheel in the normal image (Fig. 12A) but cannot recognize a large
wheel in the adversarial image (Fig. 12B), while a large wheel is a
recognizable attribute of a cannon (Fig. 12 (b)). Second, E1 found
that the CNN recognizes the head of a racket (Fig. 12C), which is
connected to the throat of a racket (Fig. 12D). These two reasons
lead to the misclassification.

E1 commented, “There may be different subtle causes that lead
to the misclassification of different adversarial examples. The value
of AEVis is that it helps me find such causes quickly and effec-
tively. I can easily integrate my knowledge into the analysis process
by leveraging the provided interactive visualizations. I also see a
great opportunity to use AEVis in analyzing more adversarial exam-
ples and summarize the major causes of the misclassification. This
probably benefits future research on robust deep learning.”

6.2.2 Analyzing Black-box Adversarial Examples
Model. We used the VGG-16 [47] network to analyze black-box at-
tacks because our employed attacking method has the knowledge of
a set of state-of-the-art CNNs, such as ResNet [21] and the Inception
network [52]. Thus, we adopted a traditional CNN (VGG) to ana-
lyze black-box attacks. We utilized the pre-trained VGG-16 network
from TensorFlow [19]. It achieved a 84.8% accuracy on the normal
examples, and a 22.4% accuracy on the adversarial examples.
Analysis process. The expert E2 continued to explore the analyzed
adversarial example, and tested it on the VGG network. He found
that it was misclassified as a beagle (a type of dog, Fig. 13 (a)). To

check how the prediction was made, E2 extracted and compared
the datapaths for normal beagle images and the adversarial panda
image. He found that the there was no obvious “merging point” in
VGG-16, because these images do not truly “merge” due to the high
prediction score of beagle images (0.75−1.0) and the relatively low
prediction score of the adversarial example (0.46). Thus, E2 relied
on his knowledge to select the layer that detected the highest-level
features (Fig. 13 (b)). By setting the color coding of feature maps as
the activation of the adversarial example, E2 found a large activation
appeared on a feature map in shared feature maps between the
beagle’s and adversarial panda’s datapath (Fig. 13A). It is a potential
cause that leads to the misclassification. Thus, he examined the
learned feature of the neurons in this feature map (Fig. 13 (c)),
and found that they learned to detect the black nose of a beagle (a
black patch, Fig. 13B). This feature is a recognizable attribute for
a beagle. To understand why the adversarial example caused a large
activation on this feature map, he further examined the activation
heat map, and found that the neurons in the top right corner are highly
activated (Fig. 13C). It indicates that there is such a feature in the
corresponding part of the image. In particular, that part of the images
is the black ear of the panda, which is also a black patch (Fig. 13C).
This feature misled the VGG-16 network to detect a black nose in
the adversarial panda image, which then led to the misclassification.

conv5_3..C

conv5_3: -0.0 199.9

1

(a)

(b)

(c)

A

BC

Figure 13: The explanation of why the adversarial panda image was
misclassified as a beagle (dog) by the VGG-16 network: (a) input
images; (b) feature maps; and (c) neurons.

7 DISCUSSION

AEVis can better disclose the inner workings of adversarial exam-
ples and help discover the vulnerable neurons that lead to incorrect
predictions. However, it also comes with several limitations, which
may shed light on future research directions.
Scalability. We have demonstrated that AEVis is able to analyze
a state-of-the-art CNN (ResNet101), which has 101 layers and is
much deeper than traditional CNNs (e.g., VGG-Net). More recently,
researchers have developed many deeper CNNs with thousands of
layers [21]. When handling such deep DNNs, if an expert zooms
in to low levels of the layer hierarchy, the layers of interest cannot
fit in one screen, even with the help of our segmented DAG. To
alleviate this issue, we can employ a mini-map to help the expert
track the current viewpoint, which has been proven effective in
TensorFlow Graph Visualizer [57]. The dot plot is another factor
that hinders AEVis from analyzing CNNs with thousands of layers.
This is because a layer group may contain hundreds of layers, and
the height of the resulting dot plot will be too large, which is a waste
of screen space. To solve this problem, we can use non-linear dot
plots [43] to improve the scalability of AEVis.

Currently, we utilize a Euler-diagram-based design to illustrate the
overlapping relationship between/among datapaths. Such a design is

suitable for comparing several datapaths [4]. Although researchers
found that approximately four objects can be tracked in a visual
comparison [23, 55, 61], experts may have special needs of compar-
ing a lot of datapaths. To fulfill these needs, we can leverage more
scalable set visualization techniques, such as PowerSet [5].
Generalization. AEVis aims at analyzing the adversarial examples
of CNNs because most research on adversarial attacks focuses on
generating adversarial images for CNNs.

In addition to attacking CNNs, there are several initial attempts
to attack other types of DNNs [1], such as multilayer perceptron
(MLP), recurrent neural networks (RNNs), autoencoders (AEs), and
deep generative models (DGMs). Among these models, AEVis can
be directly used to analyze MLPs by treating each neuron as a feature
map that contains one neuron. For other types of DNNs, we need
to develop suitable datapath extraction and visualization methods.
For example, Ming et al. [33] demonstrated that some neurons in an
RNN were critical for predicting the sentiment of a sentence, such as
the neurons for detecting positive/negative words. Such neurons and
their connections form a datapath for an RNN. Thus, by extracting
and visualizing datapaths, AEVis can be extended to analyze the
root cause of adversarial examples for these types of DNNs. For
example, to visualize the datapath of RNNs, we can first unfold the
architecture of an RNN to a DAG [17], and then employ a DAG
layout algorithm to calculate the position of each unfolded layer.

In addition to images, researchers try to generate adversarial
examples for other types of data [1], such as adversarial documents
and adversarial videos. To generalize AEVis to other types of data,
we need to change the visual hint for neurons (discrepancy map and
activation heat map) according to the target data type. For example,
when analyzing adversarial documents, we can use a word cloud to
represent the “learned feature” of a neuron in an RNN [33]. In the
word cloud, we select the keywords that activate the neuron.

8 CONCLUSION

We have presented a robustness-motivated visual analytics approach
that helps experts understand the inner workings of adversarial exam-
ples and diagnoses the root cause of incorrect predictions introduced
by the adversarial examples. The major feature of this approach is
that it centers on the concept of datapaths to tightly combine datap-
ath extraction and visualization. Two case studies were conducted
with two machine learning experts to demonstrate the effectiveness
and usefulness of our approach in analyzing both white-box and
black-box adversarial examples.

One interesting avenue for future research is to monitor the on-
line testing process, detect potentially adversarial examples, and
remove them from any further processing. The key is to design a
set of streaming visualizations that can incrementally integrate the
incoming log data with existing data. We would also like to continue
working with the machine learning experts to conduct several field
experiments, with the aim of designing more targeted and effec-
tive defense solutions based on the discovered root cause. Another
important direction is to analyze the robustness of other types of
DNNs, such as RNNs and DGMs. For these types of DNNs, exciting
research topics include more efficient datapath extraction algorithms
and suitable visualizations for different types of DNNs.

ACKNOWLEDGMENTS

This research was funded by National Key R&D Program of
China (No. SQ2018YFB100002), the National Natural Science
Foundation of China (No.s 61761136020, 61672308, 61620106010,
61621136008, 61332007), Beijing NSF Project (No. L172037),
Microsoft Research Asia, Tiangong Institute for Intelligent
Computing, NVIDIA NVAIL Program, and Tsinghua-Intel Joint
Research Institute. The authors would like to thank Yinpeng Dong
for insightful discussions in the case studies and Jie Lu for help in
the development of AEVis.

REFERENCES

[1] N. Akhtar and A. Mian. Threat of adversarial attacks on deep learning
in computer vision: A survey. arXiv preprint arXiv:1801.00553, 2018.

[2] E. Alexander and M. Gleicher. Task-driven comparison of topic mod-
els. IEEE Transactions on Visualization and Computer Graphics,
22(1):320–329, 2016.

[3] B. Alper, N. Riche, G. Ramos, and M. Czerwinski. Design study of
linesets, a novel set visualization technique. IEEE Transactions on
Visualization and Computer Graphics, 17(12):2259–2267, 2011.

[4] B. Alsallakh, L. Micallef, W. Aigner, H. Hauser, S. Miksch, and
P. Rodgers. Visualizing sets and set-typed data: State-of-the-art and
future challenges. In Eurographics Conference on Visualization, pages
1–21, 2014.

[5] B. Alsallakh and L. Ren. Powerset: A comprehensive visualization of
set intersections. IEEE Transactions on Visualization and Computer
Graphics, 23(1):361–370, 2017.

[6] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A
review and new perspectives. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 35(8):1798–1828, 2013.

[7] A. Bilal, A. Jourabloo, M. Ye, X. Liu, and L. Ren. Do convolutional
neural networks learn class hierarchy? IEEE Transactions on Visual-
ization and Computer Graphics, 24(1):152–162, 2018.

[8] C. M. Bishop. Pattern recognition and machine learning. Springer,
2006.

[9] M. Brehmer, S. Ingram, J. Stray, and T. Munzner. Overview: The
design, adoption, and analysis of a visual document mining tool for
investigative journalists. IEEE Transactions on Visualization and Com-
puter Graphics, 20(12):2271–2280, 2014.

[10] M. Brehmer, B. Lee, B. Bach, N. H. Riche, and T. Munzner. Timelines
revisited: A design space and considerations for expressive story-
telling. IEEE Transactions on Visualization and Computer Graphics,
23(9):2151–2164, 2017.

[11] M. Cisse, P. Bojanowski, E. Grave, Y. Dauphin, and N. Usunier. Par-
seval networks: Improving robustness to adversarial examples. In
International Conference on Machine Learning, pages 854–863, 2017.

[12] T. H. Cormen. Introduction to algorithms. MIT press, 2009.
[13] W. Cui, S. Liu, Z. Wu, and H. Wei. How hierarchical topics evolve in

large text corpora. IEEE Transactions on Visualization and Computer
Graphics, 20(12):2281–2290, 2014.

[14] Y. Dong. Non targeted adversarial attacks. https://github.com/
dongyp13/Non-Targeted-Adversarial-Attacks, 2017.

[15] Y. Dong, F. Liao, T. Pang, H. Su, X. Hu, J. Li, and J. Zhu. Boosting
adversarial attacks with momentum, arxiv preprint. arXiv preprint
arXiv:1710.06081, 2017.

[16] M. Gleicher. Considerations for visualizing comparison. IEEE Transac-
tions on Visualization and Computer Graphics, 24(1):413–423, 2018.

[17] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio. Deep learning,
volume 1. MIT press Cambridge, 2016.

[18] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harness-
ing adversarial examples. In International Conference on Learning
Representations, 2015.

[19] Google. Tensorflow. https://www.tensorflow.org, 2017.
[20] A. W. Harley. An interactive node-link visualization of convolutional

neural networks. In ISVC, pages 867–877, 2015.
[21] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image

recognition. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778, 2016.

[22] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten. Densely
connected convolutional networks. In IEEE Conference on Computer
Vision and Pattern Recognition, volume 1, page 3, 2017.

[23] J. Intriligator and P. Cavanagh. The spatial resolution of visual attention.
Cognitive psychology, 43(3):171–216, 2001.

[24] M. Kahng, P. Y. Andrews, A. Kalro, and D. H. P. Chau. ActiVis:
Visual exploration of industry-scale deep neural network models. IEEE
Transactions on Visualization and Computer Graphics, 24(1):88–97,
2018.

[25] B. Kim, B. Lee, and J. Seo. Visualizing set concordance with per-
mutation matrices and fan diagrams. Interacting with Computers,
19(5-6):630–643, 2007.

[26] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature,

521(7553):436–444, 2015.
[27] D. Liu, W. Cui, K. Jin, Y. Guo, and H. Qu. Deeptracker: Visualizing

the training process of convolutional neural networks. To appear in
ACM Transactions on Intelligent Systems and Technology.

[28] M. Liu, J. Shi, K. Cao, J. Zhu, and S. Liu. Analyzing the training pro-
cesses of deep generative models. IEEE Transactions on Visualization
and Computer Graphics, 24(1):77–87, 2018.

[29] M. Liu, J. Shi, Z. Li, C. Li, J. Zhu, and S. Liu. Towards better anal-
ysis of deep convolutional neural networks. IEEE Transactions on
Visualization and Computer Graphics, 23(1):91–100, 2017.

[30] S. Liu, W. Cui, Y. Wu, and M. Liu. A survey on information vi-
sualization: recent advances and challenges. The Visual Computer,
30(12):1373–1393, 2014.

[31] S. Liu, Y. Wu, E. Wei, M. Liu, and Y. Liu. Storyflow: Tracking the
evolution of stories. IEEE Transactions on Visualization and Computer
Graphics, 19(12):2436–2445, 2013.

[32] D. Lloyd and J. Dykes. Human-centered approaches in geovisualiza-
tion design: Investigating multiple methods through a long-term case
study. IEEE Transactions on Visualization and Computer Graphics,
17(12):2498–2507, 2011.

[33] Y. Ming, S. Cao, R. Zhang, Z. Li, Y. Chen, Y. Song, and H. Qu.
Understanding hidden memories of recurrent neural networks. In IEEE
VAST, 2017.

[34] S. M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard. Univer-
sal adversarial perturbations. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 86–94, 2017.

[35] S. M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard. DeepFool: A
simple and accurate method to fool deep neural networks. In IEEE
Conference on Computer Vision and Pattern Recognition, pages 2574–
2582, 2016.

[36] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis
and an algorithm. In Advances in Neural Information Processing
Systems, pages 849–856, 2002.

[37] A. Nguyen, J. Yosinski, and J. Clune. Deep neural networks are easily
fooled: High confidence predictions for unrecognizable images. In
IEEE Conference on Computer Vision and Pattern Recognition, pages
427–436, 2015.

[38] C. Olah, A. Satyanarayan, I. Johnson, S. Carter, L. Schubert, K. Ye,
and A. Mordvintsev. The building blocks of interpretability. Distill,
3(3):e10, 2018.

[39] T. Pang, C. Du, Y. Dong, and J. Zhu. Towards robust detection of
adversarial examples. arXiv preprint arXiv:1706.00633, 2017.

[40] N. Pezzotti, T. Höllt, J. Van Gemert, B. P. Lelieveldt, E. Eisemann, and
A. Vilanova. DeepEyes: Progressive visual analytics for designing deep
neural networks. IEEE Transactions on Visualization and Computer
Graphics, 24(1):98–108, 2018.

[41] P. E. Rauber, S. G. Fadel, A. X. Falcao, and A. C. Telea. Visualizing
the hidden activity of artificial neural networks. IEEE Transactions on
Visualization and Computer Graphics, 23(1):101–110, 2017.

[42] N. H. Riche and T. Dwyer. Untangling euler diagrams. IEEE Trans-
actions on Visualization and Computer Graphics, 16(6):1090–1099,
2010.

[43] N. Rodrigues and D. Weiskopf. Nonlinear dot plots. IEEE Transactions
on Visualization and Computer Graphics, 24(1):616–625, 2018.

[44] A. S. Ross and F. Doshi-Velez. Improving the adversarial robustness
and interpretability of deep neural networks by regularizing their input
gradients. arXiv preprint arXiv:1711.09404, 2017.

[45] W. Rudin et al. Principles of Mathematical Analysis, volume 3.
McGraw-hill New York, 1964.

[46] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al. Imagenet
large scale visual recognition challenge. International Journal of Com-
puter Vision, 115(3):211–252, 2015.

[47] K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[48] M. Steinberger, M. Waldner, M. Streit, A. Lex, and D. Schmalstieg.
Context-preserving visual links. IEEE Transactions on Visualization
and Computer Graphics, 17(12):2249–2258, 2011.

[49] H. Strobelt, S. Gehrmann, H. Pfister, and A. M. Rush. LSTMVis: A
tool for visual analysis of hidden state dynamics in recurrent neural

https://github.com/dongyp13/Non-Targeted-Adversarial-Attacks
https://github.com/dongyp13/Non-Targeted-Adversarial-Attacks
https://www.tensorflow.org

networks. IEEE Transactions on Visualization and Computer Graphics,
24(1):667–676, 2018.

[50] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understand-
ing of hierarchical system structures. IEEE Transactions on Systems,
Man, and Cybernetics, 11(2):109–125, 1981.

[51] N. I. P. Systems. Nips 2017: Adversarial attack. https://nips.
cc/Conferences/2017/CompetitionTrack, 2017.

[52] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking
the inception architecture for computer vision. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 2818–2826, 2016.

[53] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfel-
low, and R. Fergus. Intriguing properties of neural networks. arXiv
preprint arXiv:1312.6199, 2013.

[54] F. Y. Tzeng and K. L. Ma. Opening the black box - data driven
visualization of neural networks. In IEEE VIS, pages 383–390, 2005.

[55] X. Wang, S. Liu, J. Liu, J. Chen, J. Zhu, and B. Guo. Topicpanorama:
A full picture of relevant topics. IEEE Transactions on Visualization
and Computer Graphics, 22(12):2508–2521, 2016.

[56] L. Wilkinson. Dot plots. The American Statistician, 53(3):276–281,
1999.

[57] K. Wongsuphasawat, D. Smilkov, J. Wexler, J. Wilson, D. Mané,
D. Fritz, D. Krishnan, F. B. Viégas, and M. Wattenberg. Visualiz-
ing dataflow graphs of deep learning models in tensorflow. IEEE
Transactions on Visualization and Computer Graphics, 24(1):1–12,
2018.

[58] S. Wright and J. Nocedal. Numerical optimization. Springer Science,
35(67-68):7, 1999.

[59] Y. Wu, X. Xie, J. Wang, D. Deng, H. Liang, S. C. Hui Zhang, and
W. Chen. Forvizor: Visualizing spatio-temporal team formations in
soccer. IEEE Transactions on Visualization and Computer Graphics,
2018.

[60] X. Xie, X. Cai, J. Zhou, N. Cao, and Y. Wu. A semantic-based method
for visualizing large image collections. IEEE Transactions on Visual-
ization and Computer Graphics, 2018.

[61] S. Yantis. Multielement visual tracking: Attention and perceptual
organization. Cognitive psychology, 24(3):295–340, 1992.

[62] M. D. Zeiler and R. Fergus. Visualizing and understanding convolu-
tional networks. In European Conference on Computer Vision, pages
818–833, 2014.

[63] S. Zheng, Y. Song, T. Leung, and I. Goodfellow. Improving the robust-
ness of deep neural networks via stability training. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 4480–4488, 2016.

[64] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Object
detectors emerge in deep scene CNNs. In International Conference on
Learning Representations, 2015.

https://nips.cc/Conferences/2017/CompetitionTrack
https://nips.cc/Conferences/2017/CompetitionTrack

	Introduction
	Related Work
	Visual Analytics for Explainable Deep Learning
	Adversarial Attacks on Deep Learning

	The Design of AEVis
	Motivation
	Requirement Analysis
	System Overview

	Datapath Extraction
	Motivation and Problem Formulation
	Solution to Subset Selection
	Search space reduction
	Quadratic Approximation

	Datapath Visualization
	Layer-level Visualization
	Feature-map-level Visualization
	Neuron-level Visualization

	Evaluation
	Qualitative Analysis of Datapath Extraction
	Case Study
	Analyzing White-Box Adversarial Examples
	Analyzing Black-box Adversarial Examples

	Discussion
	Conclusion

