
1

Automatic Taxonomy Construction from
Keywords via Scalable Bayesian Rose Trees

Yangqiu Song, Member, IEEE, Shixia Liu, Senior Member, IEEE, Xueqing Liu,
and Haixun Wang, Member, IEEE

Abstract—In this paper, we study a challenging problem of deriving a taxonomy from a set of keyword phrases. A solution can
benefit many real-world applications because i) keywords give users the flexibility and ease to characterize a specific domain;
and ii) in many applications, such as online advertisements, the domain of interest is already represented by a set of keywords.
However, it is impossible to create a taxonomy out of a keyword set itself. We argue that additional knowledge and context are
needed. To this end, we first use a general-purpose knowledgebase and keyword search to supply the required knowledge
and context. Then we develop a Bayesian approach to build a hierarchical taxonomy for a given set of keywords. We reduce
the complexity of previous hierarchical clustering approaches from O(n2 logn) to O(n logn) using a nearest-neighbor-based
approximation, so that we can derive a domain-specific taxonomy from one million keyword phrases in less than an hour. Finally,
we conduct comprehensive large scale experiments to show the effectiveness and efficiency of our approach. A real life example
of building an insurance-related Web search query taxonomy illustrates the usefulness of our approach for specific domains.

Index Terms—Bayesian Rose Tree, Hierarchical Clustering, Short Text Conceptualization, Keyword Taxonomy Building

F

1 INTRODUCTION
Taxonomy is a hierarchical classification of a set of
things or concepts in a domain1. Building a taxonomy
is an essential element of many applications. For
example, in web search, organizing domain-specific
queries into a hierarchy can help better understand
the query and improve search results [49] or help
with query refinement [38]. In online advertising,
taxonomies about specific domains (e.g., insurance,
which is the most profitable domain in online ads) are
used to decide the relatedness between a given query
and bidding keywords.

In this paper, we consider the challenging problem
of inducing a taxonomy from a set of keyword phrases
instead of from a text corpus. The problem is important
because a set of keywords gives us the flexibility and
ease to accurately characterize a domain, even if the
domain is fast changing. Furthermore, in many cases,
such a set of keywords is often readily available. For
instance, search engine companies are interested in
creating taxonomies for specific advertising domains.
Each domain is described by a set of related ad
keywords (bid phrases).

• Yangqiu Song is with Department of Computer Science, Univer-
sity of Illinois at Urbana-Champaign, United States. E-mail: yq-
song@illinois.edu

• Shixia Liu (corresponding author) is with School of Software, Tsinghua
University, Beijing, China. E-mail: shixia@tsinghua.edu.cn

• Xueqing Liu is with Department of Computer Science, University of Illi-
nois at Urbana-Champaign, United States. E-mail: xliu93@illinois.edu

• Haixun Wang is with Google Research, United States. E-mail:
haixun@google.com

1. http://en.wikipedia.org/wiki/Taxonomy

The problem of inducing a taxonomy from a set of
keywords has one major challenge. Although using
a set of keywords allows us to more accurately char-
acterize a highly focused, even fast-changing domain,
the set of keywords itself does not contain explicit rela-
tionships from which a taxonomy can be constructed.
One way to overcome this problem is to enrich the set
of keyword phrases by aggregating the search results
for each keyword phrase (i.e., throwing each keyword
phrase into a search engine, and collecting its top k
search results) into a text corpus. Then it treats the text
corpus as a bag of words and constructs a taxonomy
directly out of the bag of words using a hierarchical
clustering approach [9], [40]. The problem with this
approach is that the corpus represents the context
of the keyword phrases, rather than the conceptual
relationships that exist among the keyword phrases.
For instance, the search results for the query “auto
insurance” contain a very limited number of articles
on how “auto insurance” is defined or characterized.
The majority of articles either introduce a certain type
of car insurance or talk about car insurance in passing.
From such articles, we can extract context words such
as “Florida,” “Fords,” or “accident.” As a result, the
context can be arbitrary and not insurance related.

To tackle this challenge, we propose a novel “knowl-
edge+context” approach for taxonomy induction. We
argue that both knowledge and context are needed
to create a taxonomy out of a set of keywords. For
example, given two phrases “vehicle insurance” and
“car insurance,” humans know immediately that “car
insurance” is a sub-concept of “vehicle insurance,”
because humans have the knowledge that a car is a

2

vehicle. Without this knowledge, a machine can hardly
derive this relationship unless the extended corpus
from the keywords (e.g., using keyword search) hap-
pens to describe this relationship in a syntactic pattern
that the machine can recognize (e.g., “vehicles such as
cars”). On the other hand, context is also important.
It is unlikely that the knowledgebase (especially a
general-purpose one) knows about every subsumption
relationship in the specific domain. For example, it has
no idea that x is a sub-concept of y. However, through
context, we may find that x is highly related to z and
in the knowledgebase z is a sub-concept of y. Thus,
using knowledge and context, we can establish the
relationship between x and y.

Specifically, we deduce a set of concepts for each key-
word phrase using a general-purpose knowledgebase
of world knowledge [51] and we obtain the context in-
formation of the keyword from a search engine, which
is a set of words co-occurring in the search snippets.
After enriching the keyword set using knowledge and
context, we use hierarchical clustering to automatically
induce a new taxonomy. We adopt Bayesian Rose
Tree (BRT) [5] as a basic algorithm for taxonomy
induction since it is simple to implement and easy
to understand and be interpreted. Moreover, we also
extend the basic BRT with two different marginal
distributions, i.e., Dirichlet compound multinomial
(DCM) and Von Mises-Fisher (vMF) distributions, as
well as two nearest-neighbor-based approximation
methods. DCM [32] and vMF [2] are very useful for
modeling high-dimensional sparse data, which is the
case of our taxonomy induction faces with. DCM
is particularly designed for discrete features, while
vMF can be used for both discrete and real-value
features. For both distributions, the nearest neighbors
are searched to reduce the examination of clusters for
aggregation. Thus, this approximation can significantly
reduce the computational complexity of the clustering
algorithm.

A preliminary version of this work appeared in KDD
2012 [31]. We have extended the framework with the
vMF distribution and provide a systematic comparison
with the previously proposed DCM distribution. We
show that vMF is better both in efficiency and effective-
ness. Our paper offers three technical contributions.
First, we illustrate how to derive the concepts and
context from each keyword. Second, we present a way
to formulate the taxonomy building as a hierarchical
clustering problem based on the concepts and context
of the keywords. And finally, we scale up the method
to millions of keywords.

2 RELATED WORK

2.1 Domain-Specific Taxonomy Building
Recently, automatically creating a domain-specific tax-
onomy has attracted a lot of interest [11], [17], [33], [34],
[35], [37], [44]. The assumption is that the text corpus

accurately represents the domain. Although these
text-corpus based approaches have achieved some
success [34], [44], they have several disadvantages.

First, for a highly focused domain, it is very difficult
to find a text corpus that accurately characterizes that
domain. Second, even if we can find a corpus that
accurately characterizes the domain, we may still have
a data sparsity problem [51]. High quality patterns
typically have very low recall. For example, it is
well known that Hearst patterns [22] (i.e., “such as”
patterns) have a high accuracy, but it is unrealistic to
assume that the text corpus expresses every ontological
relationship in “such as” or its derived patterns,
especially when the text corpus is not large enough.

Compared to previous methods, we provide a way
to cluster keywords on the fly for a given keyword set.
Therefore, we do not need a specific corpus to extract
the taxonomic relationships of keywords. Instead, we
naturally group them with similar semantic meanings.

2.2 General Knowledgebases
Instead of building taxonomies from a text corpus,
we can also extract a domain-specific taxonomy from
a large, general-purpose knowledgebase. A general
knowledgebase can be constructed manually or auto-
matically.

Manually constructed knowledgebases, including
WordNet [18], the Open Directory Project (ODP)2,
Wikipedia3, Cyc project [29] and Freebase [6], are
constructed the fine-grained human annotation. They
have revealed their limitations in terms of resources
and labor requirements. Often they provide a relatively
smaller set of concepts and offer incomplete formu-
lation of the concepts of terms used in day-to-day
communication [42].

On the contrary, automatically constructed knowl-
edgebases take advantage of the large amount of Web
information and recent growth in parallel computing
infrastructure and techniques [13]. Recent develop-
ments in such knowledgebases use natural language
processing and machine learning techniques to au-
tomatically detect useful knowledge from raw text.
Examples include KnowItAll [15], TextRunner [3], Wiki-
Taxonomy [36], YAGO [45], NELL [7], and Probase [51].
The major limitations of a general-purpose knowledge-
base are that it usually has low coverage of a highly
focused domain and it may produce ambiguous inter-
pretations for highly specialized terms in the domain.
For example, the coverage of ODP for classifying URLs
is about 60% [49]. Given 50 million randomly sampled
Web search queries, Probase can cover about 81% of
them. However, there are still many tail queries that
cannot be identified. Therefore, a general methodology
for constructing a taxonomy given a set of keywords
should be developed.

2. http://www.dmoz.org/
3. http://www.wikipedia.org/

3

Fig. 1. Example of a binary-branch taxonomy.

Compared to general knowledgebases, we build a
keyword taxonomy upon them, instead of extracting
from them. Our method leads to better coverage
because we also make use of context information
for the keywords as complementary information. The
context information is extracted from a search engine
and therefore offers better coverage of keywords.

2.3 Hierarchical Clustering
Hierarchical clustering is a widely used clustering
method [25]. Previously, using hierarchical clustering
to generate a taxonomy has been explored in [16],
[17], [9], [40]. Among them, [16], [17] used syntactic
pattern distribution to measure the class of verb frames
and bottom-up breadth-first clustering algorithm to
generate the hierarchy. In contrast, we focus more on
noun phrases. Moreover, [9], [40] used context words
to represent the keywords and conduct hierarchical
clustering. Compared with these approaches, we not
only employ the context information of keywords, but
also explicitly express their concepts, enabling us to
explicitly describe the clusters.

From the perspective of methodologies, two strate-
gies are used for hierarchical clustering: agglomera-
tive and divisive. The agglomerative approach [23],
[25], [39], [46] builds a tree from the bottom up by
combining the two most similar clusters at each step,
while the divisive approach [25], [43], [27] builds a
tree from the top down by splitting the current cluster
into two clusters at each step. Since divisive clustering
approaches need to determine which cluster to split at
each step and how many clusters to split, it is difficult
to control and less deterministic compared with ag-
glomerative hierarchical clustering approaches. Thus,
we base our approach on agglomerative hierarchical
clustering algorithms and briefly introduce them in
the following section.

Traditional agglomerative hierarchical clustering
algorithms construct binary trees [23], [25], [39], [46].
However, binary branches may not be the best model
to describe the data’s intrinsic structure in many
applications. Fig. 1 gives an example. The goal here is
to create a taxonomy from a set of insurance-related
keyword phrases. The assumption is that we have
a good similarity measure that enables us to group
related keywords in an optimal manner. Still, the
outcome might be sub-optimal or unnatural. In the
figure, “indiana cheap car insurance,” “kentucky cheap
car insurance,” and “missouri cheap car insurance” are
on different levels, but apparently they belong to the
same cluster. Clearly, this disadvantage is introduced
by the model, not the similarity measure, which means
that no matter how accurately we understand the data,
the result will still be sub-optimal.

To remedy this, multi-branch trees have been de-
veloped [5]. An example of multi-branch clustering
is shown in Fig. 2, where nodes such as “indiana
cheap car insurance,” “kentucky cheap car insurance,”
and “missouri cheap car insurance” are grouped under
the same parent node. Currently, there are several
multi-branch hierarchical clustering approaches [1],
[5], [26]. The methods proposed by Adams et al. [1]
and Knowles et al. [26] are based on the Dirichlet
diffusion tree, which uses an MCMC process to infer
the model. Blundel et al. [5] propose a deterministic
and agglomerative approach called BRT. We choose
BRT because it is faster than the MCMC based ap-
proaches and it is deterministic, which means, it will
generate the same tree with different trails as if the
parameters are set to be the same. We extend the BRT
with two different marginal distributions, and provide
approximate mechanisms based on nearest neighbor
search to significantly speed up the building process.

3 BAYESIAN ROSE TREE (BRT)
In this section, we briefly introduce the BRT [5]
algorithm. The original BRT is introduced with a set
of binomial distributions for text data analysis. In
this work, we modify the marginal distribution as a
Dirichlet compound multinomial and Von Mises-Fisher
distributions. Here we introduce the base algorithm
of our work, the original BRT proposed in [5].

A rose tree is a mixture distribution over a set of par-
titions φ(Tm) ∈ Pm of data at leaves Dm = leaves(Tm):

p(Dm|Tm) =
∑

φ(Tm)∈Pm

p(φ(Tm))p(Dm|φ(Tm)), (1)

where p(φ(Tm)) is the probability of the partition φ(Tm)
and p(Dm|φ(Tm)) is the probability of data given
the partition. Since the number of partitions can be
exponentially large, we follow [5] to use the following
recursive definition of the probability:

p(Dm|Tm) = πTmf(Dm)+ (1− πTm)
∏

Ti∈Children(Tm)

p(Di|Ti)

(2)

4

Fig. 2. Example of Multi-branch Query Taxonomy.

where f(Dm) is the marginal probability of data
Dm and πTm

is the “mixing proportion.” Intuitively,
πTm is the prior probability that all the data in
Tm is kept in one cluster instead of partitioned
into sub-trees. This means with probability πTm

, tree
Tm has no sub-structures, that is, its child nodes
are individual data samples; while with probability
1 − πTm

, it is represented by a set of child nodes.∏
Ti∈Children(Tm) p(Dm|Tm) is the likelihood that the

tree is partitioned into sub-trees. In BRT [5], πTm is
defined as:

πTm = 1− (1− γ)nTm−1 (3)

where nTm
is the number of children of Tm, and 0 ≤

γ ≤ 1 is the hyperparameter to control the model. A
larger γ leads to coarser partitions and a smaller γ
leads to finer partitions.

The major steps of BRT comprise greedily and
agglomeratively merging the data and clusters inside
the tree. In the beginning, each data sample is regarded
as a tree on its own: Ti = {xi} where xi is the feature
vector of ith data sample. For each step, the algorithm
selects two trees, Ti and Tj , and merges them into
a new tree, Tm. Unlike binary hierarchical clustering,
BRT uses three possible merging operations [5]:

• Join: Tm = {Ti, Tj}, that is, Tm has two child
nodes.

• Absorb: Tm = {children(Ti) ∪ Tj}, that is, Tm has
|Ti|+ 1 child node.

• Collapse: Tm = {children(Ti)∪ children(Tj)}, that
is, Tm has |Ti|+ |Tj | child nodes.

Specifically, in each step, the BRT algorithm greedily
finds two trees, Ti and Tj , to maximize the ratio of
probability:

p(Dm|Tm)

p(Di|Ti)p(Dj |Tj)
(4)

where p(Dm|Tm) is the likelihood of data Dm given
the tree Tm, where Dm is all the leaf data of Tm, and
Dm = Di ∪ Dj .

The major cost of this bottom-up hierarchy construc-
tion approach is dominated by:
(1) searching for pairs of clusters to merge;
(2) calculating the likelihood associated with the

merged cluster based on Eq. (4).

4 KEYWORD TAXONOMY BUILDING

To build a taxonomy effectively and efficiently, we
summarize our framework in Fig. 3 and explain it as
follows.
• Keyword representation: We first use knowledge

of concepts and context for keyword representa-
tion, which is introduced in Section 4.1. We use
the technique called conceptualization [42] based
on Probase [51] to acquire concepts and use search
results as a resource to extract context.

• Feature vector modeling: Then we introduce
the text modeling approaches in Section 4.2. We

5

Keyword representation

Knowledge

enhancement

Context

extraction

Feature vector modeling

DCM

distribution

vMF

distribution

kNN-

approximation

ϵNN-

approximation

Nearest-neighbor-based approximation

Fig. 3. The pipeline of taxonomy construction

extend our previous work [31] from the Dirichlet
compound multinomial distribution (Section 4.2.1)
to the more flexible Von Mises-Fisher distribution
(Section 4.2.2) and discuss the difference between
these two modeling approaches.

• Nearest-neighbor-based approximation: Finally,
we show how to approximate the original BRT
using nearest neighbors of clusters to speed up the
building process. Specifically, we first introduce
the k-nearest-neighbor based approach and its
extension with Spilltree [30] (Section 5.1). Then
we introduce the ε-ball-nearest-neighbor based
approach, which is implemented with the PPJoin+
algorithm [52] (Section 5.2).

4.1 Knowledge and Context
We propose a “knowledge+context” approach to aug-
ment the representation of keywords and build a
better taxonomy. The knowledge information is ob-
tained from a general-purpose knowledgebase and the
context information is obtained from search engine
snippets.

We use the knowledgebase Probase, which is con-
structed by automatic ontology population [50]. The
core of Probase consists of a large set of isa relation-
ships, which are extracted from a text corpus of 1.68
billion web pages [51]. Probase also contains other
information. For example, for each concept, it contains
a set of attributes that describe the concept. One
unique feature of Probase is that it contains millions
of concepts, from well-known ones such as “country”
and “artists” to small but concrete concepts such as
“wedding dress designers” and “renewable energy
techniques.” The richness of Probase enables us to
identify and understand millions of concepts people
use in their daily communication.

The knowledgebase enables us to derive concepts
from a keyword phrase in order to enrich it. For
instance, given “microsoft and apple,” we derive
concepts such as IT companies, big companies, etc., and
given “apple and pear,” we derive concepts such
as fruit or tree. However, these are still not enough
for understanding the keyword phrase. We need to
enhance the knowledgebase in two ways.

First, in order to get a more comprehensive rep-
resentation of keywords for inference, we intro-
duce a set of probabilistic measures. For example,
P (instance|concept) tells us how typical the instance
in the given concept is [51]. Intuitively, knowing that
both “robin” and “penguin” are birds is not enough.
We need to know “robin” is a much more typical
bird than “penguin,” that is, when people talk about
birds, it is more likely that they are thinking about a
robin than a penguin. Such information is essential
for understanding the intent behind a short text
string. In addition to P (instance|concept) we also
obtain P (concept|instance), P (concept|attribute), and
P (attribute|concept) [42]. These values are calculated
during the information extraction process, for example:

P (instance|concept) = n(instance, concept)

n(concept)
(5)

where n(instance, concept) denotes the number of
times instance and concept co-occur in the same sentence
with the patterns Probase used for extraction, and
n(concept) is the frequency of the concept.

Second, a keyword phrase may be syntactically and
semantically complicated and require sophisticated
chunking and parsing to identify meaningful terms.
For example, we conceptualize “indiana cheap car
insurance” by first recognizing the terms “indiana,”
“cheap car,” and “car insurance” that appear in Probase,
and then we derive concepts such as state, car insurance,
bill, etc. We use two heuristic rules to detect the
instances/attributes contained in the short text using
Probase. First, we prefer longer phrases since they tend
to be more specific [48]. For example, for the query
“truck driving school pay after training,” we obtain
“truck driving,” “driving school,” “pay,” and “training,”
which are all longest instances in Probase. Although
“driving” is also an instance in Probase, we do not use
it since it is not the longest instance. Second, we prefer
the high frequency phrases known by Probase. For
example, if two instances/attributes are of the same
length, we choose the one connected to more concepts.
A more detailed algorithm is shown in [41].

During the phrase detection, we also use a rule based
plural words converter to check whether the converted
phrase is in Probase. Moreover, we use synonyms
mined from Probase to enrich the concepts [28]. Finally,
each concept is associated with a probability score
that indicates the strength of the concept. A detailed
description of the conceptualization techniques can be
found in [42].

Although Probase contains millions of concepts, we
cannot expect it to cover everything. To remedy this,
we collect the “context” of a keyword phrase and
use the context to supplement the concepts related
to the phrase. To obtain the context, we submit the
keyword phrase to a search engine and collect the
top ten snippets in the search results. The context
is represented as a bag of words. The quality of

6

the context is much lower than that of the concepts
obtained from Probase, in the sense that for a given
word in the bag-of-words context, we do not know
its semantic relationship with the keyword. However,
they can still be useful, especially when the concepts
we obtained are insufficient. As an example, consider
two keyword phrases, “www.monster.com” and “mon-
ster.com.” Probase knows that “monster.com” is a job
site, but it knows nothing about “www.monster.com”
(since no one has mentioned it in a “such as” pat-
tern). Thus, conceptualization will report that the
two phrases have zero similarity. Through the search
engine, we find that “www.monster.com” is associated
with phrases such as web site, online job site, job board,
etc. Thus, by adding the context information, the query
containing “www.monster.com” will have a greater
similarity to the query containing “monster.com.”

4.2 Feature Vector Modeling
To cluster the data into a hierarchy, we first need to
model the data. This corresponds to calculating f(D)
in Eq. (2), the marginal distribution of data D (Section
3). The original BRT approach [5] assumes that the
data is modeled by a set of binary features that follow
the Bernoulli distribution. In other words, features are
not weighted. In our approach, we use features that
consist of concepts and context to represent the data.
Since even a short piece of text may contain multiple
topics or concepts, it is important to rank them by their
significance. Thus, unlike BRT, we incorporate weights
into the marginal distribution f(D). Therefore, we
first derive a set of weighted terms that represent the
context and the concept, and then we use the Dirichlet
compound multinomial (DCM) distribution [32] and
the Von Mises-Fisher (vMF) distribution to model the
data.

Given a set of keyword phrases {kw1, · · · , kwn},
we derive a list of (tj , wj) pairs for each keyword
kwi, where tj is either a concept produced by the
knowledgebase, or a context word generated by search,
and the wj is derived as follows:

wj = λ · freq(tj) + (1− λ) ·
n∑
i

Ci · P (tj |kwi) (6)

where λ is a parameter that controls how much we
value context compared to concepts. In practice, we
select the λ so that the largest frequencies of concept
and context words are the same value. freq(tj) is the
frequency of a term j in the context derived from
the search results; P (tj |kwi) is the probability of the
term as a concept given keyword phrase kwi, and
is provided by the knowledgebase (as in Eq. (5)); Ci
is the frequency of kwi in the knowledgebase, and
Ci ·P (tj |kwi) is used as the frequency of the term as a
concept. We then set the feature vector of a keyword
kwi as xi = (x

(1)
i , ..., x

(V)
i) ∈ RV . Here V is the

vocabulary size and term frequencies x(j)
i = wj . Other

approaches that generate distributional descriptions
of keywords include using co-occurrence of syntactic
or semantic patterns in the context [10], [20], [21],
[24]. Compared with these approaches, we not only
employ the context information of keywords, but
also explicitly express their concepts, enabling us to
explicitly describe the clusters.

In the hierarchical clustering algorithm, once two
keywords or keyword clusters are grouped together,
the grouped keyword cluster can contain multiple
topics. For example, initially we have four keywords
“China,” “India,” “Germany,” and “France.” Although
these four keywords share some common concepts
such as country and nation, we can still distinguish
them based on the concepts with smaller weights.
First, “China” and “India” will be grouped together
since they share many concepts like Asian country and
emerging market. “Germany” and “France” will also
be grouped together because they share concepts like
European country and western nation. After that, these
two clusters will be grouped together. The final cluster
actually contains multiple topics, i.e. both Asian country
and European country. Therefore, we need a distribution
to better capture this characteristic. In this work, we
employ the DCM and vMF distributions.

4.2.1 DCM distribution:

We first use the DCM distribution [32] to represent the
marginal distribution f(D). DCM is derived based on
multinomial and Dirichlet conjugate distributions. The
multinomial distribution can naturally characterize
the co-occurrence counts of terms, while the prior
distribution, i.e., Dirichlet distribution, can be regarded
as smoothing over counts. The generative process of
a set of features underlying DCM is such that we first
sample a multinomial distribution from the Dirichlet
distribution, and then sample the features based on
the multinomial distribution. The multinomial distri-
bution can be regarded as a sub-topic distribution,
which makes certain features appear more likely in a
feature vector [32]. DCM integrates the intermediate
multinomial distribution, and thus it represents either
more general topics or multiple topics. In hierarchical
clustering, we incrementally merge clusters. Therefore,
DCM is more appropriate for evaluating whether two
clusters (with multiple topics) should be merged.

Specifically, the likelihood of multinomial distribu-
tion p(xi|θ) is defined by:

p(xi|θ) =
m!∏V
j x

(j)
i !

V∏
j=1

p(x
(j)
i |θ) =

m!∏V
j x

(j)!

V∏
j=1

[θ(j)]x
(j)
i ,

(7)
where xi ∈ RV is a feature vector and V is the
vocabulary size; x(j)

i is the frequency of term v(j);
m =

∑V
j x

(j)
i ; and θ = (θ(1), θ(2), . . . , θ(V))T ∈ RV

are the parameters of the multinomial distribution.

7

The Dirichlet distribution prior is:

p(θ|α) =
Γ(

∑V
j=1 α

(j))∏V
j=1 Γ(α(j))

V∏
j=1

[θ(j)]
α(j)−1

=
1

∆(α)

V∏
j=1

[θ(j)]
α(j)−1

, (8)

where α = (α(1), α(2), . . . , α(V))T ∈ RV , and the
Gamma function4 has the property Γ(x+ 1) = xΓ(x).

The “Dirichlet delta function” ∆(α) =
Γ(

∑V
j=1 α

(j))∏V
j=1 Γ(α(j))

is
introduced for convenience.

Then the marginal distribution f(D) is given by:

fDCM (D) =
∫
θ

n∏
i

p(xi|θ)p(θ|α)dθ

=
n∏
i

m!∏V
j x

(j)
i !
·

∆(α +
∑
i xi)

∆(α)
. (9)

Using this marginal distribution fDCM (D), we can
integrate the weights into the keyword feature vector.

4.2.2 vMF distribution:
In text analysis, the most popular metric to evaluate
the similarity between two high-dimensional sparse
documents is cosine similarity. This is because the
text data is first mapped onto a high-dimensional unit
hypersphere and then the similarity is evaluated based
on the angle between two text data. vMF is the distri-
bution that characterizes this type of directional data.
In our modeling, we set both the prior and likelihood
distribution to vMF and the marginal distribution has
the following form:

fvMF (D) =
∫
µ

n∏
i

p(xi|µ, κ)p(µ|µ0, κ0)dµ

=
cV (κ0)

∏n
i cV (κ)

cV (‖κ
∑
i xi + κ0µ0‖)

. (10)

The likelihood is:

p(xi|µ, κ) = cV (κ) exp(κµ
Txi) (11)

where ‖xi‖ = 1, ‖µ‖ = 1, κ ≥ 0 and the vocabulary
size V > 2. Here µ is the directional parameter that
characterizes the direction of the cluster center. κ is the
concentration parameter where a larger value implies
stronger concentration about the mean direction. The
normalization constant is given by:

cV (κ) =
κV/2−1

(2π)V/2IV/2−1(κ)
, (12)

where Ir(·) is the modified Bessel function of the first
kind and order r [2].

The prior of vMF is also a vMF distribution:

p(µ|µ0, κ0) = cV (κ0) exp(κ0µ
T
0 µ) (13)

4. For integer variables, Gamma function is Γ(x) = (x− 1)!. For
real numbers, it is Γ(x) =

∫∞
0 tx−1e−tdt.

where we also have ‖µ0‖ = 1, κ0 ≥ 0.
The choice of vMF enables the clustering algorithm

to be more flexibile for using different text features.
Although in this paper we use the frequency of terms
(or concepts) as the features to represent keywords,
there are many cases where we want to use real-
value features, e.g., TFIDF (term frequency–inverse
document frequency), instead of discrete features. In
these cases, vMF is still applicable while DCM is not.
We will see in the experiments section that vMF

performs better on the evaluated data sets, both from
efficiency and effectiveness perspectives.

Given these two types of modeling distributions, we
can build the taxonomy from keywords using the BRT
algorithm. Next, we will introduce how to construct
the taxonomy more efficiently.

5 EFFICIENT TAXONOMY CONSTRUCTION

The complexity of the original BRT is analyzed as
follows. Assume in the current round there are c
clusters. The two steps described in Section 3 take
O(c2) time. At the start of the algorithm, we set
c = n, the number of data samples. For all the clusters
merging into one cluster, if we first compute the
likelihood in Eq. (4), and sort them before we search
for merging pairs, it will take O(n2 · CV + n2 log n)
time complexity, where CV is the maximum number
of non-zero elements in all the initial vectors xi’s. For
high-dimensional text data, the document will have
hundreds of words on average. Therefore, CV cannot
be ignored when we analyze the overall complexity
compared to log n. This is not applicable to any large-
scale data set. Moreover, this approach suffers from
O(n2) memory cost. For 100, 000 data samples, this
will take 3× 8× 1010 = 240G bytes memory to contain
the likelihood of all the pairs, if we use 8 bytes to
store double-precision values and have three types of
merging likelihood (“join,” “absorb,” and “collapse”).
Thus, BRT is not applicable to large-scale data sets.

The most time consuming process in agglomerative
clustering is searching all the candidate cluster pairs to
find the best pairs to merge. If we can reduce the search
space for BRT by pruning the pairs of keyword clusters
that are most unlikely to be merged, then we can
reduce the cost of searching agglomerative clustering.
We propose “caching” a set of nearest neighbors for
each data sample. Then the search complexity only
depends on the number of nearest neighbors. However,
searching for nearest neighbors still incurs a cost of
O(n) for each data sample. The time complexity of
finding k-nearest neighbors can be reduced to O(log n)
using techniques such as KD-trees [4] and Metric
trees [47]. However, these techniques are not suitable
for high-dimensional data since they partition the
data space dimension by dimension. Approximation
methods such as LSH (Locality-Sensitive Hashing) [19]
can be used when the number of dimensions is large.

8

Algorithm 1 Nearest-neighbor-based BRT.
Input: A set of data samples D.
Initialization 1: Set Ti = xi for i = 1, 2, · · · , n; number of clusters
c = n.
Initialization 2: Find the nearest neighbors N (Ti) for each cluster,
and compute all the likelihood scores.
while c > 1 do

1. Find Ti and Tj in all neighborhood sets {Nk(Ti)}, whose
merge maximizes Eq. (4), where m ∈ {join, absorb, collapse}.
2. Tm ← the result of merge on Ti and Tj .
3. Delete Ti and Tj .
4. Find the nearest neighbors set N (Tm) for the new cluster.
5. c← c− 1.

end while

Particularly, Spilltree [30] relaxes the non-overlapping
constraints of Metric trees and incorporates the tech-
nique used in LSH, thus combining the benefits of
both methods.

In this section, we focus on adapting two major
types of nearest neighbor approaches for efficient
taxonomy construction: k-nearest-neighbor (kNN) and
ε-ball-nearest-neighbor (εNN) [8]. kNN finds k-nearest
neighbors for each data sample and is not concerned
with the density of the data. εNN uses a spherical ball
to bound all the nearest neighbors within the ball. In
our taxonomy construction approach, we significantly
reduce the time complexity by using methods such as
Spilltree [30] and PPJoin+ [52].

5.1 kNN-Approximation
This paper introduces two kNN-based approximation
approaches based on BRT. A flowchart for using the
nearest neighbors to approximate the construction
procedure of BRT is shown in Algorithm 1.
kNN-BRT: Using the kNN approach, we first find

the k nearest neighbors for each data sample and
then check the possibility of merging within the
neighborhood set. We denote Nk(x) as the k-nearest
neighbor set of data x. To find the k-nearest neighbors
of a data sample, we retain a minheap of size k to
maintain the data with the largest similarities scores.
When a new data sample comes that has a larger
similarity score than the top value (the smallest one
in the minheap), we replace the top index with the
new data sample. Compared to BRT, the space cost is
significantly reduced from O(n2) to O(nk). The time
complexity is also reduced to O(n2 · CV + n2 log k).

Spilltree-BRT: Using the k nearest neighbors to
construct BRT is still time consuming. We then use
the Spilltree algorithm [30] to further reduce the time
complexity.

Spilltree is a generalization of Metric trees [47].
Metric trees partition the data space into binary trees,
and retrieve the nearest neighbors by a DFS (depth
first search). Metric trees will be less efficient when
the number of dimensionality is large (e.g., larger than
30 [30]). To solve this problem, the Spilltree algorithm
offers two major modifications:

1. It introduces a random projection before partition-
ing the data space.

2. It introduces the overlapping/non-overlapping
regions between nodes when partitioning each
sub-tree. When searching for the nearest neigh-
bors in the sub-trees with overlapping partitions,
Spilltree searches one branch only.

According to the Johnson-Lindenstrauss Lemma [12],
embedding a data set of dimension n to an O(log n)
dimensional space does not lead to much distortion for
pairwise distances. As a result, a brute-force search in
the projected space provides a (1 + ε)-NN search [30]
in the original space. Thus, by projecting the data
to a much lower dimensional space, high precision
can be guaranteed while the time cost is significantly
reduced, especially when the original data has millions
of dimensions.

Moreover, the original metric trees perform a DFS to
find the nearest neighbors. By introducing overlapping
nodes, Spilltree adopts a combined strategy of a
defeatist search and DFS. The defeatist search may fail
for non-overlapping nodes if a query and its nearest
neighbors belong to different branches. However, it is
guaranteed to succeed for the overlapping nodes when
the shortest distance in the overlapping regions is
larger than or equal to the distance between the query
and its nearest neighbor. By setting an appropriate tol-
erance parameter τ , the accuracy of both overlapping
and non-overlapping nodes is ensured [30]. Overall,
the time complexity of a Spilltree search is O(log n) [30].

The random projection to d-dimensional space has a
time complexity of O(nd · CV). Building a Spilltree
costs O(nd log n). To use Spilltree to search the k
nearest neighbors, we also keep a minheap to main-
tain k data samples when traversing the Spilltree.
This step will cost O(nd log n log k) time for all the
data. In summary, using Spilltree to build BRT costs
O(nd · CV + nd log n log k). Compared to the kNN-
BRT algorithm, using Spilltree will cost additional
O(V d + nd) memory to store the random projection
matrix and the Spilltree.

5.2 εNN-Approximation
In εNN-approximation, for each data sample, we retain
the nearest neighbors whose similarity with the data
samples are larger than a pre-defined threshold ε. The
flow chart of the εNN-BRT algorithm is shown in
Alg. 2. Using εNN-approximation reduces the time
complexity to O(n2 ·CV). The storage of εNN depends
on the number of neighbors that satisfy the ε threshold.
However, we might need to re-run the εNN algorithm
in order to ensure we can find candidates to merge,
because when the threshold ε is too large, εNN will
not return any nearest neighbors.

PPJoin-BRT: To support εNN-approximation, we
need to efficiently find ε-neighbors of a data sample.

9

Algorithm 2 Bayesian Rose Tree with εNN Approxi-
mation (εNN-BRT).

Input: A set of data samples D.
Initialization 1: Set Ti = xi for i = 1, 2, · · · , n, number of clusters
c = n.
Initialization 2: Set threshold ε = 0.9. Find ε nearest neighbor-
hoods for each cluster, and compute all the likelihood scores.
while c > 1 do

if No available clusters in the candidate set to merge. then
Run εNN algorithm for current clusters with smaller thresh-
old ε = 0.9× ε.

end if
1. Find Ti and Tj in all the neighborhood sets {Nε(Ti)},
and merge operation m that maximizes Eq. (4), where m ∈
{join, absorb, collapse}.
2. Tm ← the result of operation m on Ti and Tj .
3. Find ε nearest neighborhoods set Nε(Ti) for the new cluster.
4. Delete Ti and Tj .
5. c← c− 1.

end while

TABLE 1
Comparison of computational complexity and memory
requirements of different algorithms. (CV is the number

of non-zero elements in vector x and L =
∑
j x

(j))
Algorithm Time complexity Memory requirement

BRT O(n2 · CV + n2 logn) O(n2)

kNN-BRT O(n2 · CV + n2 log k) O(nk)
Spilltree-BRT O(nd · CV + nd logn log k) O(nk + V d+ nd)

PPJoin-BRT O(n2[(1− ε2)L+ logL]) O(nf(ε) + nL)

We adopt the PPJoin+ [52] approach for this purpose.
PPJoin+ uses two types of filtering, prefix filtering
and suffix filtering, to filter the data samples that do
not satisfy certain constraints. In prefix filtering, it
has been proven that the cosine similarity is larger
than a threshold ε if and only if the number of
overlapped terms between the two sets is larger
than ε′ = dε

√
Li · Lje, where Li =

∑
k x

(k)
i is the

length of document xi. Therefore, we can quickly filter
out pairs of documents as if their overlap is larger
than ε′. The time complexity of this step is reduced
to (1 − ε2)

∑
j x

(k)
i , ε < 1 [52]. Suffix filtering, first

derives an upper bound of hamming distance Hmax

corresponding to the pre-defined threshold ε. Then we
filter out the data if the lower bound of the hamming
distance between two documents Hmin(xi,xj) is larger
than the upper bound Hmax. We also implement an
algorithm based on the binary search for the lower
bound of the hamming distance. The overall time
complexity of PPJoin+ is O(n2[(1−ε2)L+logL]), where
L is the average length of documents. PPJoin-BRT
takes O(nf(ε)) memory to store the likelihood values
of the nearest neighbors. Moreover, it needs an inverted
index to facilitate prefix filtering, and the memory cost
is O(nL).

A comparison of all the algorithms is shown in
Table 1, which shows that Spilltree-BRT has the least
time complexity. However, it requires more memory.

TABLE 2
Comparison of likelihood for query data (the results of
BRT-vMF are positive because the vMF distribution is

density instead of discrete probability).
Methods Likelihood
BRT-DCM −1.9140816× 107 ± 3.81483× 105

kNN-BRT-DCM −1.9169448× 107 ± 3.82904× 105

Spilltree-BRT-DCM −1.9258698× 107 ± 3.62756× 105

PPJoin-BRT-DCM −1.9261274× 107 ± 4.00327× 105

BRT-vMF 1.8358411× 108 ± 5.01538× 106

kNN-BRT-vMF 1.8354566× 108 ± 4.99842× 106

Spilltree-BRT-vMF 1.8353889× 108 ± 5.04271× 106

PPJoin-BRT-vMF 1.7894110× 108 ± 5.07942× 106

TABLE 3
Comparison of likelihood for news data (the results of
BRT-vMF are positive because the vMF distribution is

density instead of discrete probability).
Methods Likelihood
BRT-DCM −1.1727374× 106 ± 1.68893× 104

kNN-BRT-DCM −1.1727220× 106 ± 1.65647× 104

Spilltree-BRT-DCM −1.1727759× 106 ± 1.68754× 104

PPJoin-BRT-DCM −1.1728185× 106 ± 1.65829× 104

BRT-vMF 1.0722783× 108 ± 1.01769× 106

kNN-BRT-vMF 1.0722238× 108 ± 1.01736× 106

Spilltree-BRT-vMF 1.0695835× 108 ± 1.01597× 106

PPJoin-BRT-vMF 1.0657703× 108 ± 1.00084× 106

6 EXPERIMENTS

To demonstrate the effectiveness and scalability of the
proposed taxonomy building algorithms, we tested the
original BRT and the nearest-neighbor-based methods
on two real-world data sets. The nearest-neighbor-
based methods include kNN-BRT, Spilltree-BRT, and
PPJoin-BRT. In this section, we introduce the evalua-
tion results in detail.

6.1 Data Sets
In all the experiments, we tested different algorithms
based on two data sets. The first one was a query data
set consisting of 114,076 queries, where the concept and
context information were extracted using the methods
introduced in Section 3.1. The vocabulary size was
912,792 and the average number of non-zero elements
in the data was 935. Here, the features was created by
expanding the query with the related search snippets
and concepts. We also evaluated the algorithms on a
larger news data set. It contained one million news
articles. The vocabulary size was 252,174 and the
average number of words was 242. All the experiments
were conducted on a 64-bit server with 2.5GHz CPU
and 32G of memory. The memory cost for the whole
news data set was around 10G.

6.2 Likelihood of Taxonomy Building
We compared the likelihood of different algorithms.
Likelihood p(D|T) is utilized to measure how much the
model fits the data. A larger likelihood value means
that the tree better fits the data. If we want to compare
different trees, likelihood can be used to judge whether
the two trees can fit the data equally as well. In this

10

●

●

●

●

●

●

●

10
00

20
00

50
00

10
00

0

20
00

0

50
00

0

10
00

00

1e
+

00
1e

+
01

1e
+

02
1e

+
03

1e
+

04
1e

+
05

●

●

●

●

Data Size

T
im

e
(S

ec
on

ds
)

●

●

BRT
PPJoin−BRT
kNN−BRT
Spilltree−BRT

(a) End-to-end time for query data.

●

●

●

●

●

●

●

●

●

●

10
00

20
00

50
00

10
00

0

20
00

0

50
00

0

10
00

00

20
00

00

50
00

00

10
00

00
0

1e
+

00
1e

+
01

1e
+

02
1e

+
03

1e
+

04
1e

+
05

●

●

●

●

Data Size

T
im

e
(S

ec
on

ds
)

●

●

BRT
PPJoin−BRT
kNN−BRT
Spilltree−BRT

(b) End-to-end time for news data.

Fig. 4. Time cost comparison of different algorithms based the DCM distribution.

10
00

20
00

50
00

10
00

0

20
00

0

50
00

0

10
00

00

1
e

+
0

0
1

e
+

0
1

1
e

+
0

2
1

e
+

0
3

1
e

+
0

4
1

e
+

0
5

Data Size

T
im

e
 (

S
e
c
o

n
d

s
)

BRT

PPJoin−BRT

kNN−BRT

Spilltree−BRT

(a) End-to-end time for query data.

10
00

20
00

50
00

10
00

0

20
00

0

50
00

0

10
00

00

20
00

00

50
00

00

10
00

00
0

1
e

+
0

0
1

e
+

0
1

1
e

+
0

2
1

e
+

0
3

1
e

+
0

4
1

e
+

0
5

Data Size

T
im

e
 (

S
e
c
o

n
d

s
)

BRT

PPJoin−BRT

kNN−BRT

Spilltree−BRT

(b) End-to-end time for news data.

Fig. 5. Time cost comparison of different algorithms based on the vMF distribution.

experiment, we use the likelihood measure to evaluate
whether the fitness of the approximate algorithm is
comparable to that of the original BRT, following the
original BRT paper [5].

As shown in Tables 2 and 3, the nearest-neighbor-
based methods are comparable with the original BRT.
Particularly, the likelihood of kNN-BRT was sometimes
even better than the original BRT. The reason is that
searching for the candidate pairs from the nearest
neighbors can reduce the data noise. Therefore, it led
to a better local optima. This phenomenon has also
been observed in [8].

6.3 Scalability of Taxonomy Building

To test the scalability of the algorithms, we first
conducted experiments to examine the “end-to-end”
time cost of different algorithms. We set k = 10 for
kNN-BRT and Spilltree-BRT. The dimension of random
projection used in Spilltree-BRT was set to 10. The
overlapping parameter τ used in Spilltree was set to
0.001. We show the results based on DCM distribution
modeling in Fig. 4 and the results based on vMF
distribution modeling in Fig. 5.

As shown in Figs. 4(a), 4(b), 5(a), and 5(b), the
Spilltree-BRT algorithm was the fastest. kNN-BRT also
performed faster than BRT and PPJoin-BRT. PPJoin-
BRT was not as fast as expected because the process of
finding the nearest neighbors must be re-run if there
is no candidate cluster pairs to merge. Particularly, for

the query data set with the DCM distribution, PPJoin-
BRT was even worse than the original BRT algorithm.
This is due to the fact that PPJoin was significantly
affected by the average length of documents. The
average length of documents in the query data is about
four times that of the news data. For the news data
set, PPJoin-BRT performed better than BRT.

Since Spilltree-BRT is the fastest algorithm, we also
investigated how different Spilltree parameters affect
time cost. The following experiments were conducted
with 10,000 data samples. The comparison results
between the nearest-neighbor-based methods and the
original BRT are shown in Figs. 6(a), 6(b), 7(a), and
7(b). In the figures, different curves represent the
time costs of the Spilltree algorithms with different
overlapping tolerance parameters τ . This parameter
controls how many data samples we allowed to be
overlapped by different tree nodes in a Spilltree. As
shown in the figures, the larger overlapping parameter
resulted in slower algorithm execution since it made
the algorithm backtrack more often to the parent
nodes [30]. Moreover, in each curve, we also show
how the projected dimensions affected the time cost.
Generally, fewer dimensions led to faster algorithm
execution. Spilltree-BRT can be 200–300 times faster
for the DCM distribution and 600–1000 times faster
for the vMF distribution than BRT when we projected
the data onto a ten-dimensional space.

11

●

●

●

●
●

10 50 100 500 1000

0
50

10
0

15
0

20
0

25
0

30
0

Dimensions

S
pe

ed
up

●

τ = 0.1
τ = 0.001
τ = 0.00001

(a) Speedup over BRT with different parame-
ters in Spilltree for query data.

●

●

●

●

●

10 50 100 500 1000

0
50

10
0

15
0

20
0

25
0

30
0

Dimensions

S
pe

ed
up

●

τ = 0.1
τ = 0.001
τ = 0.00001

(b) Speedup over BRT with different parame-
ters in Spilltree for news data.

Fig. 6. The impact of different parameters and settings for kNN based methods (10,000 data samples).

10 50 100 500 1000

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

Dimensions

S
p

e
e
d

u
p

τ = 0.1

τ = 0.001

τ = 0.00001

(a) Speedup over BRT with different parame-
ters in Spilltree for query data.

10 50 100 500 1000

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

Dimensions

S
p

e
e
d

u
p

τ = 0.1

τ = 0.001

τ = 0.00001

(b) Speedup over BRT with different parame-
ters in Spilltree for news data.

Fig. 7. The impact of different parameters and settings for kNN based methods (10,000 data samples).

6.4 Top KNN Search

To investigate the quality of the proposed taxonomy
building method, we also applied it to the top KNN
search problem. This problem was defined as: given a
query in the form of short text, we retrieved similar
queries based on the concept and context features
from an already built tree. We used K to distinguish
the notation of k used for kNN-based construction of
taxonomy. In this experiment, we investigated whether
Spilltree, kNN-BRT, and Spilltree-BRT can benefit this
problem.

We first selected 1,000 queries to build the taxonomy
trees by leveraging the Spilltree algorithm and a
different algorithms of BRTs. The experiments of
Spilltree were conducted by doing a grid search for
tolerance parameter τ = {0.2, 0.3, 0.4}. The experi-
ments of all BRT-related algorithms were conducted
by doing a grid search for parameters α = {5, 10, 15}
(Eq. (8)), κ = κ0 = {1, 100, 10, 000} (Eq. (10)) and
γ = {0.1, 0.5, 0.9} (Eq. (3)). We have chosen the best
results from this experiment. Then we randomly
selected 100 queries to search the KNN of each query.
The ground truth was generated based on the cosine
similarity. We evaluated the precision of the top K
search problems for different algorithms, which is
the proportion of the overlapped top K keywords
retrieved by the generated trees and the brute-force

TABLE 4
Comparison of the accuracy of Spilltree for top K

searches. (d is the dimension of random projection.)
Algorithm Top 5 Top 10
Spilltree (d = 10) 0.290±0.364 0.321±0.350
Spilltree (d = 50) 0.632±0.317 0.640±0.295
Spilltree (d = 100) 0.754±0.298 0.731±0.280
Spilltree (d = 500) 0.904±0.149 0.880±0.172

search using the cosine similarity metric. The results
are shown in Tables 4, 5, and 6.

From the analysis of the results, we can draw
the following conclusions: First, the dimension of
random projection significantly affects the accuracy
of Spilltree. In general, the more random projection
features we used, the better the accuracy was. The
search accuracy can be improved from 30% to more
than 90%. Second, the number of the nearest neighbors
used to accelerate the building procedure does not
affect the accuracy very much. For kNN-BRT, the
accuracy does not show a significant change when
changing the number of k. Third, Spilltree-BRT can
further improve the accuracy of Spilltree. With the
same projection dimensionality d, Spilltree-BRT results
were significantly better than Spilltree. Increasing d
or k can both improve the accuracy. This is because
larger d resulted in a better searching accuracy of
the nearest neighbors, while larger k led to more

12

TABLE 5
Comparison of the accuracy of BRT using the DCM

distribution for top K searches. (k is the number of the
nearest neighbors.)

Algorithm Top 5 Top 10
BRT-DCM 0.894±0.252 0.929±0.180
PPJoin-BRT-DCM 0.868±0.247 0.852±0.271
kNN-BRT-DCM (k = 1) 0.910±0.248 0.903±0.253
Spilltree-BRT-DCM
(d = 10, k = 1) 0.738±0.391 0.761±0.365
(d = 50, k = 1) 0.880±0.276 0.868±0.280
(d = 100, k = 1) 0.901±0.234 0.897±0.229
(d = 500, k = 1) 0.909±0.226 0.918±0.205
kNN-BRT-DCM (k = 5) 0.920±0.211 0.930±0.182
Spilltree-BRT-DCM
(d = 10, k = 5) 0.694±0.415 0.691±0.410
(d = 50, k = 5) 0.897±0.241 0.922±0.198
(d = 100, k = 5) 0.928±0.192 0.939±0.162
(d = 500, k = 5) 0.928±0.196 0.946±0.153
kNN-BRT-DCM (k = 20) 0.893±0.254 0.898±0.248
Spilltree-BRT-DCM
(d = 10, k = 20) 0.810±0.335 0.830±0.313
(d = 50, k = 20) 0.905±0.239 0.931±0.189
(d = 100, k = 20) 0.921±0.214 0.946±0.157
(d = 500, k = 20) 0.933±0.183 0.955±0.134

TABLE 6
Comparison of the accuracy of BRT using the vMF

distribution for the top K searches. (d is the dimension
of random projection.)

Algorithm Top 5 Top 10
BRT-vMF 0.934±0.179 0.951±0.139
PPJoin-BRT-vMF 0.948±0.222 0.948±0.222
kNN-BRT-vMF(k = 1) 0.936±0.176 0.950±0.142
Spilltree-BRT-vMF
(d = 10, k = 1) 0.682±0.423 0.734±0.326
(d = 50, k = 1) 0.864±0.309 0.865±0.297
(d = 100, k = 1) 0.905±0.234 0.914±0.210
(d = 500, k = 1) 0.897±0.245 0.924±0.193
kNN-BRT-vMF(k = 5) 0.941±0.160 0.955±0.116
Spilltree-BRT-vMF
(d = 10, k = 5) 0.759±0.391 0.767±0.375
(d = 50, k = 5) 0.923±0.206 0.930±0.179
(d = 100, k = 5) 0.938±0.186 0.948±0.152
(d = 500, k = 5) 0.936±0.183 0.954±0.132
kNN-BRT-vMF(k = 20) 0.937±0.170 0.955±0.119
Spilltree-BRT-vMF
(d = 10, k = 20) 0.842±0.309 0.839±0.307
(d = 50, k = 20) 0.933±0.189 0.945±0.150
(d = 100, k = 20) 0.934±0.185 0.947±0.150
(d = 500, k = 20) 0.932±0.185 0.956±0.127

candidate cluster pairs which increase the opportunity
for finding the right clusters to merge. Fourth, the
results of using DCM distribution modeling and vMF
distribution modeling were consistent. The modeling
distribution did not seem to affect the final results of
K-nearest neighbor search in this data set. Moreover,
the results of vMF were much better than those of
DCM because vMF was consistent with the baseline

cosine similarity.
We also tested the search time for Spilltree and Spill-

tree-BRT. 110K query data were used to build the trees
and 200 queries were randomly selected to test the
retrieval time. As shown in Table 7, Spilltree performs
faster with a lower dimension of random projections.
However, the accuracy was not good enough (see
Table 4). With higher dimensions, the time cost of
Spilltree increased very quickly. The major reasons
are: (1) It costs more time to compare the similarity
between two points for higher dimensionality; (2)
Given the same parameter configuration, Spilltree will
search more points in a high dimensional space. As
shown in Tables 5 and 6, the accuracy of Spilltree-
BRT was more than 90% when d = 50 and k = 20.
Thus, we performed a grid search for d = {10, 50}
for Spilltree-BRT. All results were achieved in an
acceptable amount of time. The search time of Spilltree-
BRT depends on the structure of the tree. Thus,
changing d and k only affected the building time of
Spilltree-BRT and did not monotonically affect the
search time.

Moreover, we found that when d was smaller, the
time of Spilltree-BRT using the vMF distribution was
comparable to or slightly larger than the one using
the DCM distribution. However, when d was larger,
the time of trees with the vMF distribution was
smaller than with the DCM distribution. This may
be because the trees based on the vMF distribution
were much more skewed than the trees based on the
DCM distribution. Therefore, it required more time
to search for a good result. We can also verify from
Tables 5 and 6 that the accuracy of vMF was lower
than DCM when d was small. When d became larger,
the tree’s quality was much better. The time of vMF
was much smaller than that of DCM because we used
different mechanisms to accelerate the computation
of these two distributions. For DCM, we cached all
the possible logarithm values involved in the tree
construction, and then looked up the table for a quick
computation of log-likelihood in Eq. (9). For vMF, since
the Bessel function in Eq. (12) was difficult to compute,
we leveraged the approximation that has been used
in [14] (in page 5, Section 5). The computational cost
for the Bessel function can be significantly reduced.
In this case, the search cost for vMF involved less
computational operations than DCM and thus the time

TABLE 7
Comparison of the time (in 10−6 seconds) of top K search. (d is the dimension of random projection.)

d = 10 d = 50 d = 100 d = 500
Algorithm Top 5 Top 10 Top 5 Top 10 Top 5 Top 10 Top 5 Top 10
Spilltree 2.29 1.86 657.02 693.02 1,103.84 1,159.44 3,867.02 4,443.81
Spilltree-BRT-DCM (k = 1) 34.38 35.94 143.75 251.56 1,724.99 2,195.30 2,425.03 2,621.91
Spilltree-BRT-DCM (k = 5) 48.44 40.63 34.38 43.75 1,782.82 1,814.07 2,135.97 2,223.47
Spilltree-BRT-DCM (k = 20) 148.44 371.88 50.00 50.01 1,496.89 1,482.82 2,121.89 2,112.51
Spilltree-BRT-vMF (k = 1) 203.13 203.13 85.94 85.94 231.25 267.19 1,975.01 2,092.20
Spilltree-BRT-vMF (k = 5) 140.63 117.20 203.13 242.19 46.88 31.25 442.19 657.83
Spilltree-BRT-vMF (k = 20) 882.82 890.63 414.07 406.25 78.13 101.56 309.20 451.30

13

of vMF was much smaller.

7 IMPLEMENTATION ISSUES

Since text data is high-dimensional and sparse, and
the data we deal with is very large, we need to pay
attention to some implementation issues. In addition
to the computation of the Bessel function mentioned
in the previous section, we also want to introduce two
more implementation issues.

The high-dimensional sparse data was stored as key-
value pairs. We compared it with two implementations,
a hash-based dictionary and parallel sorted lists. The
hash-based dictionary indexed the keys with “int”
type and, when comparing two dictionaries of data,
it takes O(1) to search for each element. With the
parallel sorted list, we first kept two lists of keys and
values, and then sorted each data samples with its keys.
In both implementations, for vector-level operations
such as product, they take O(min{nz(xi),nz(xj)}) time,
where nz(xi) is the non-zero elements of a vector xi.
The parallel sorted list takes O(nz(xi) log[nz(xi)]) to
sort the lists by keys. However, when the vocabulary
size is large, i.e., more than one million words, the
hash-based dictionary often generated a number of key
conflicts. Moreover, it took more CPU time to compute
the hash function to retrieve a key. Therefore, with
real-world applications, we found that parallel sorted
lists were 5 and 150 times faster than the hash-based
dictionary for small and large numbers of elements in
the vector, respectively.

When the data set is very large, there are numerical
underflow issues when we compute the log-likelihood
of Eq. (2). The likelihood can easily increase to 10−1000–
10−10000, and thus we cannot do multiplication first
and then compute the logarithm. Instead, we have
adopted the following methods to incrementally com-
pute the likelihood5:

log(
∏
i

pi)→
∑
i

log(pi); (14)

log(
∑
i

pi)→ a+ log

[∑
i

exp[log(pi)− a]

]
where a = maxi log(pi). In this way, computing
the likelihood of a very large data set avoids the
probability product and does not encounter numerical
problems.

8 CONCLUSION AND FUTURE WORK

This paper presents an approach to automatically
derive a domain-dependent taxonomy from a set
of keyword phrases by leveraging both a general
knowledgebase and keyword search. Our approach
can be regarded as specifying the general-purpose

5. http://blog.smola.org/post/987977550/log-probabilities-
semirings-and-floating-point-numbers

knowledge (or world knowledge) of taxonomy to
a domain specified task by three steps: (1) world
knowledge formulation, (2) concept deduction for
domain keywords, and (3) hierarchical cluster induc-
tion. Compared with previous work [9], [40], the
introduction of concepts in the representation enables
the descriptive power of keyword clusters and thus
better characterizes the abstractive information of the
keywords. The incorporation of context information
leads to better coverage complementary to the general-
purpose knowledge. To better build the taxonomy, we
provide two types of text distribution modeling meth-
ods and three nearest-neighborhood-based methods
to speed up the original Bayesian rose tree algorithm.
Particularly, the Spilltree-based algorithm reduces the
time and memory cost significantly. We also conducted
a set of experiments to demonstrate the effectiveness
and efficiency of the proposed algorithms.

ACKNOWLEDGEMENTS

We would like to thank Charles Blundell and Yee
Whye Teh for their help on the implementation of the
Bayesian rose tree and thanks to Ting Liu for help on
the implementation of Spilltree.

REFERENCES
[1] R. P. Adams, Z. Ghahramani, and M. I. Jordan. Tree-structured

stick breaking for hierarchical data. In NIPS, 2010.
[2] A. Banerjee, I. S. Dhillon, J. Ghosh, and S. Sra. Clustering

on the unit hypersphere using von mises-fisher distributions.
Journal on Machine Learning Research, 6:1345–1382, 2005.

[3] M. Banko, M. J. Cafarella, S. Soderland, M. Broadhead, and
O. Etzioni. Open information extraction from the web. In
IJCAI, pages 2670–2676, 2007.

[4] J. L. Bentley. Multidimensional binary search trees used for
associative searching. Communications of the ACM, 18(9):509–517,
1975.

[5] C. Blundell, Y. W. Teh, and K. A. Heller. Bayesian rose trees.
In UAI, pages 65–72, 2010.

[6] K. D. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Tay-
lor. Freebase: a collaboratively created graph database for
structuring human knowledge. In SIGMOD, pages 1247–1250,
2008.

[7] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. H. Jr.,
and T. M. Mitchell. Toward an architecture for never-ending
language learning. In AAAI, pages 1306–1313, 2010.

[8] W.-Y. Chen, Y. Song, H. Bai, C.-J. Lin, and E. Y. Chang. Parallel
spectral clustering in distributed systems. IEEE Trans. Pattern
Anal. Mach. Intell., 33(3):568–586, 2011.

[9] S.-L. Chuang and L.-F. Chien. Towards automatic generation
of query taxonomy: A hierarchical query clustering approach.
In ICDM, pages 75–82, 2002.

[10] P. Cimiano, S. Staab, and J. Tane. Automatic acquisition of
taxonomies from text: FCA meets NLP. In ECML/PKDD Work-
shop on Adaptive Text Extraction and Mining, Cavtat-Dubrovnik,
Croatia, pages 10–17, 2003.

[11] W. Dakka and P. G. Ipeirotis. Automatic extraction of useful
facet hierarchies from text databases. In ICDE, pages 466–475,
2008.

[12] S. Dasgupta and A. Gupta. An elementary proof of the
Lohnson-Lindenstrauss lemma. Technical report, MIT, 1999.
ICSI Technical Report TR-99-006.

[13] J. Dean and S. Ghemawat. Mapreduce: Simplified data
processing on large clusters. In OSDI, 2004.

[14] C. Elkan. Clustering documents with an exponential-family
approximation of the dirichlet compound multinomial distri-
bution. In ICML, pages 289–296, 2006.

[15] O. Etzioni, M. Cafarella, and D. Downey. Webscale information
extraction in knowitall (preliminary results). In WWW, 2004.

14

[16] D. Faure and C. Nédellec. A corpus-based conceptual clustering
method for verb frames and ontology acquisition. In In LREC
workshop on adapting lexical and corpus resources to sublanguages
and applications, pages 5–12, 1998.

[17] D. Faure and C. Nédellec. Knowledge acquisition of predi-
cate argument structures from technical texts using machine
learning: The system ASIUM. In EKAW, pages 329–334, 1999.

[18] C. Fellbaum, editor. WordNet: an electronic lexical database. MIT
Press, 1998.

[19] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high
dimensions via hashing. In VLDB, pages 518–529, 1999.

[20] G. Grefenstette. Sextant: Exploring unexplored contexts for
semantic extraction from syntactic analysis. In ACL, pages
324–326, 1992.

[21] R. Grishman and J. Sterling. Generalizing automatically
generated selectional patterns. In COLING, pages 742–747,
1994.

[22] M. A. Hearst. Automatic acquisition of hyponyms from large
text corpora. In COLING, pages 539–545, 1992.

[23] K. A. Heller and Z. Ghahramani. Bayesian hierarchical
clustering. In ICML, pages 297–304, 2005.

[24] D. Hindle. Noun classification from predicate-argument
structures. In ACL, pages 268–275, 1990.

[25] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a
review. ACM Comput. Surv., 31:264–323, September 1999.

[26] D. A. Knowles and Z. Ghahramani. Pitman-Yor diffusion trees.
In UAI, pages 410–418, 2010.

[27] S. LAMROUS and M. TAILEB. Divisive hierarchical k-means.
In CIMCA, page 18, 2006.

[28] T. Lee, Z. Wang, H. Wang, and S. won Hwang. Web scale
taxonomy cleansing. pages 1295–1306, 2011.

[29] D. B. Lenat and R. V. Guha. Building Large Knowledge-Based
Systems: Representation and Inference in the Cyc Project. Addison-
Wesley, 1989.

[30] T. Liu, A. W. Moore, A. Gray, and K. Yang. An investigation
of practical approximate nearest neighbor algorithms. In NIPS,
pages 825–832, 2005.

[31] X. Liu, Y. Song, S. Liu, and H. Wang. Automatic taxonomy
construction from keywords. In KDD, pages 1433–1441, 2012.

[32] R. E. Madsen, D. Kauchak, and C. Elkan. Modeling word
burstiness using the Dirichlet distribution. In ICML, pages
545–552, 2005.

[33] I. Mani, K. Samuel, K. Concepcion, and D. Vogel. Automatcally
inducing ontologies from corpora. In Workshop on Computational
Terminology, 2004.

[34] O. Medelyan, S. Manion, J. Broekstra, A. Divoli, A.-L. Huang,
and I. H. Witten. Constructing a focused taxonomy from a
document collection. In ESWC, pages 367–381, 2013.

[35] R. Navigli, P. Velardi, and S. Faralli. A graph-based algorithm
for inducing lexical taxonomies from scratch. In IJCAI, pages
1872–1877, 2011.

[36] S. P. Ponzetto and M. Strube. Deriving a large-scale taxonomy
from wikipedia. In AAAI, pages 1440–1445, 2007.

[37] H. Poon and P. Domingos. Unsupervised ontology induction
from text. In ACL, pages 296–305, 2010.

[38] E. Sadikov, J. Madhavan, L. Wang, and A. Y. Halevy. Clustering
query refinements by user intent. In WWW, pages 841–850,
2010.

[39] R. S. Savage, K. A. Heller, Y. Xu, Z. Ghahramani, W. M. Truman,
M. Grant, K. J. Denby, and D. L. Wild. R/bhc: fast bayesian
hierarchical clustering for microarray data. BMC Bioinformatics,
10, 2009.

[40] D. Shen, M. Qin, W. Chen, Q. Yang, and Z. Chen. Mining
web query hierarchies from clickthrough data. In AAAI, pages
341–346, 2007.

[41] Y. Song, H. Wang, W. Chen, and S. Wang. Transfer under-
standing from head queries to tail queries. In CIKM, pages
1299–1308, 2014.

[42] Y. Song, H. Wang, Z. Wang, H. Li, and W. Chen. Short text
conceptualization using a probabilistic knowledgebase. In
IJCAI, pages 2330–2336, 2011.

[43] M. Steinbach, G. Karypis, and V. Kumar. A comparison of
document clustering techniques. In KDD Workshop on Text
Mining, 2000.

[44] E. Stoica and M. A. Hearst. Automating creation of hierarchical
faceted metadata structures. In NAACL HLT, 2007.

[45] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of
semantic knowledge. In WWW, pages 697–706, 2007.

[46] M. Telgarsky and S. Dasgupta. Agglomerative bregman
clustering. In ICML, 2012.

[47] J. K. Uhlmann. Satisfying general proximity/similarity queries
with metric trees. Information Processing Letters, 40(4):175–179,
1991.

[48] Z. Wang, H. Wang, and Z. Hu. Head, modifier, and constraint
detection in short texts. In ICDE, pages 280–291, 2014.

[49] R. W. White, P. N. Bennett, and S. T. Dumais. Predicting short-
term interests using activity-based search context. In CIKM,
pages 1009–1018, 2010.

[50] W. Wong, W. Liu, and M. Bennamoun. Ontology learning from
text: A look back and into the future. ACM Comput. Surv.,
44(4):20, 2012.

[51] W. Wu, H. Li, H. Wang, and K. Q. Zhu. Probase: A probabilistic
taxonomy for text understanding. In SIGMOD, pages 481–492,
2012.

[52] C. Xiao, W. Wang, X. Lin, J. X. Yu, and G. Wang. Efficient
similarity joins for near-duplicate detection. ACM Trans.
Database Syst., 36(3):15, 2011.

Yangqiu Song is a postdoctoral researcher
at University of Illinois at Urbana-Champaign.
He received his B.E. and PH.D. degree from
Tsinghua University, China. His current re-
search focuses on using machine learning
and data mining to extract and infer insightful
knowledge from big data, including the tech-
niques of large scale learning algorithms, nat-
ural language understanding, text mining and
visual analytics, and knowledge engineering.

Shixia Liu is an associate professor at Ts-
inghua University. Her research interests
include visual text analytics, visual social
analytics, and graph visualization. Before
joining Tsinghua University, she worked as
a lead researcher at Microsoft Research Asia
and a research staff member at IBM China
Research Lab. She received a B.S. and M.S.
in Computational Mathematics from Harbin
Institute of Technology, a Ph.D. in Computer
Science from Tsinghua University. Shixia Liu

is the corresponding author of this paper.

Xueqing Liu received the diploma degree
in computer science from the Tsinghua Uni-
versity, China, in 2012. Currently, she is
working toward the graduate degree in the
Department of Computer Science, University
of Illionois Urbana-Champaign. Her research
interests include information retrieval and data
mining.

Haixun Wang joined Google Research
(Mountain View) in 2013. He received the B.S.
and M.S. degrees in Computer Science from
Shanghai Jiao Tong University in 1994 and
1996, the Ph.D. degree in Computer Science
from University of California, Los Angeles in
June, 2000. His research interests include
text analytics, natural language processing,
knowledge base, semantic network, artificial
intelligence, database language and system,
graph data management, etc.

