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Reconstruction of curved solids from engineering drawings
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Abstract

This paper presents a new approach for reconstructing solids with planar, quadric and toroidal surfaces from three-view engineering

drawings. By applying geometric theory to 3-D reconstruction, our method is able to remove restrictions placed on the axes of curved

surfaces by existing methods. The main feature of our algorithm is that it combines the geometric properties of conics with af®ne properties to

recover a wider range of 3-D edges. First, the algorithm determines the type of each 3-D candidate conic edge based on its projections in three

orthographic views, and then generates that candidate edge using the conjugate diameter method. This step produces a wire frame model that

contains all candidate vertices and candidate edges. Next, a maximum turning angle method is developed to ®nd all the candidate faces in the

wire-frame model. Finally, a general and ef®cient searching technique is proposed for ®nding valid solids from the candidate faces; the

technique greatly reduces the searching space and the backtracking incidents. Several examples are given to demonstrate the ef®ciency and

capability of the proposed algorithm. q 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Rapid changes in CAD technologies have left behind a

huge quantity of legacy data in the form of engineering

drawings. Many of these older designs are needed for main-

taining existing mechanical systems and as a basis for design-

ing the next generation of products. 2-D descriptions of

engineering drawings are unintuitive, dif®cult to manipulate

and redesign, and do not serve as a basis for computer aided

design. It is therefore important to have ef®cient algorithms

for reconstructing solid objects from the drawings. One of the

earliest such algorithms was proposed by Idesawa [1].

Over the past two decades, much effort has gone into the

automatic reconstruction of 3-D solid models from engineer-

ing drawings [2±4]. Basically, the reconstruction algorithms

can be categorized into two general approaches according to

the solid representation schemes used. The ®rst family of algo-

rithms, known as CSG oriented approach, adopts a top-down

reconstruction strategy; while the other family, known as

B-rep oriented approach, works in bottom-up fashion.

The CSG oriented approach assumes that each 3-D object

can be built from certain primitives in a hierarchical

manner. It selects a 2-D loop as a base and uses translational

sweep operation to construct a 3-D primitive; the constructed

primitives are then assembled to form the ®nal object. This is

the basic approach adopted by Chen [5], Meeran [6], Masuda

[7] and Shum [8]. A main drawback of the CSG oriented

approach is that it is dif®cult to recognize special patterns

in the primitives from complicated drawings; thus it is gener-

ally applicable only to drawings of mechanical parts of

uniform thickness or rotational objects.

The B-rep oriented approach, which is based on the

`¯eshing out projections' concept, was formalized by

Wesley and Markowsky [9,10]. The approach involves the

following main steps:

1. Generate 3-D candidate vertices from 2-D vertices

2. Generate 3-D candidate edges from 3-D candidate

vertices

3. Construct candidate faces from 3-D candidate edges on

the same surface

4. Construct 3-D object from candidate faces

Many researchers have implemented variants of this

approach. Earlier efforts of reconstruction were aimed at

generating polyhedral objects from their projections

[1,9,10]. Most of the later research has focused on extending

the range of objects to be reconstructed. An approximation

method that introduces two kinds of supplementary lines,

silhouette lines and tangency lines, has been proposed to

reconstruct objects with curved surfaces [11]. In order to
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generate tangency edges and silhouette edges, Sakurai [11],

Lequette [12] and Shin [13] also introduced two kinds of 2-

D auxilliary verticesÐsilhouette vertices and tangency

vertices. However, their methods may fail when there is

more than one 2-D edges between two 2-D vertices in a

view. Kuo [14,15] proposed a ®ve-point method to deal

with this problem. To ®nd a one-to-one correspondence

among the different views, Kuo's method has to divide all

the conics into quadrants using the center lines, obtain the

3-D parametric equation for each quadrant, then combine

them using one parametric equation, and ®nally transform

the parametric form to its standard form. This is a very time-

consuming process. More recently, Liu [16] and Oh [17]

extended the earlier methods to deal more ef®ciently with

curved surfaces. Tanaka [18] gave a method for automati-

cally decomposing a 2-D assembly drawing into 3-D part

drawings by a system of solid element equations.

Two major limitations in existing reconstruction methods

are as follows:

1. Narrow domain of applicability due to the restriction on

the axes of the curved surfaces and conics to be parallel

to one of the co-ordinate axes.

2. Long processing time is needed due to combinatorial

searches and complicated geometric operations. For

example, in order to ®nd solids from the reconstructed

wire frame, methods based on B-rep approach have to

introduce cutting edges, to check all possible combina-

tions of 3-D subparts, and to assemble those constructed

subparts to obtain all objects. This leads to an exponential

growth in complexity.

This paper proposes a stable reconstruction algorithm that

places no restrictions on the axes of curved surfaces and

conics. To the best of our knowledge, there is no such algo-

rithm in the literature. We have successfully overcomed the

two limitations by using the conjugate diameter method to

reconstruct 3-D objects with quadric and toroidal surfaces

directly without using polyhedron approximation. By not

introducing supplementary lines that are needed in polyhe-

dron approximation, we manage to increase both the ef®-

ciency and reliability of the reconstruction. We have chosen

to base our reconstruction algorithm on the B-Rep oriented

approach because it can handle complicated drawings more

easily than the CSG oriented approach. Three orthographic

views are used as input. They contain two types of line

segments: solid and dashed. The objects to be reconstructed

are limited to compact, oriented, and 2-manifold objects,

which are assumed to be bounded by only planes, quadric

surfaces, or toroidal surfaces. Our reconstruction algorithm

consists of the following steps:

1. Preprocess the input data for reconstruction

2. Generate a 3-D wire-frame that consists of candidate

vertices and candidate conic edges from 2-D geometric

elements

3. Search for 3-D candidate faces in the wire-frame

model

4. Search for all possible solids from the candidate

faces

Step 2 is the most crucial in this algorithm; it deter-

mines the domain of solid objects to be reconstructed.

We have developed a new approach for this step based

on the concept of conjugate diameters. The mathemati-

cal de®nition and theory involved in developing this

new approach are presented in Section 2. Detailed

description of the four steps in the reconstruction algo-

rithm is described in Section 3. Section 4 shows some

reconstruction results. Finally, conclusion and future

work are presented in Section 5.

2. Mathematical theory for generating wire-frame

We ®rst introduce some preliminary de®nitions which are

useful for subsequent discussions.

De®nition 1. (non-degenerate parallel projection). Under

parallel projection, if the plane containing a space conic is

not perpendicular to the projection plane, then the parallel

projection is said to be non-degenerate.

De®nition 2. (af®ne map). A map F that maps E 3 onto

itself is called an af®ne map if it leaves the barycentric

combinations invariant; that is, if

x �
X

2jaj x; aj [ E3 �1�
and F is an af®ne map, then

Fx �
X

2 jFaj Fx;Faj [ E3 �2�

De®nition 3. (®eld). Under an af®ne map, the set that

contains all the points and all the line segments in a plane

domain is called a ®eld.

De®nition 4. (corresponding points). Under an af®ne map,

if a point A in a plane domain is mapped to a point A 0 in

another plane domain, then the points A and A 0 are called

corresponding points.

De®nition 5. (corresponding axis) Under an af®ne map,

the line on which every point is mapped back to the line

itself is called the corresponding axis of the af®ne map.

De®nition 6. (principal direction). If two perpendicular

lines in one ®eld correspond to two perpendicular lines in

another ®eld under an af®ne map, then the directions of the

two lines in each ®eld are called the principal directions of

that ®eld.
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De®nition 7. (conjugate diameter, conjugate chord). If

two diameters of a central conic section are such that one

of them bisects all chords that are parallel to the other, then

they are called conjugate diameters. For parabolas, a

diameter that bisects all chords that are parallel to each

other is called a conjugate diameter, and the chords are

called conjugate chords.

We shall now prove the projective property of conics,

which is useful for determining the classes of space conics

from their projections.

Theorem 1. If at least one of the projections of a planar

curve in space is a conic, then the planar curve is also a

conic.

Proof of Theorem 1. The proof is derived by contradic-

tion and the fact that the number of times that a line inter-

sects an algebraic curve is invariant under non-degenerate

parallel projections. Suppose the degree of the planar curve

in space is m, where m ± 2. Without loss of generality, let

the projection in the front view be non-degenerate. Suppose

this projection curve is a conic. From the well-known funda-

mental theorem of algebra, it follows that a line intersects a

curve of degree n that does not contain it, counting multi-

plicities at most n times [19]. Conversely, if a planar curve

intersects a line at most n times, the degree of the curve is n.

Since the number of times that a line intersects an algebraic

curve is invariant under non-degenerate parallel projections,

the projection of the space curve of degree m in the front

view is therefore another algebraic curve of the same

degree. This leads to a contradiction.

It follows from Theorem 1 that a projected conic corre-

sponds to a conic in space. In addition, the class of conic

curves is invariant under non-degenerate parallel projection

[20]. Thus, projected ellipses, parabolas and hyperbolas

correspond to space ellipses, parabolas and hyperbolas,

respectively, under non-degenerate parallel projections.

Therefore we can determine the class of a space conic

from the class of its projections by the above property.

Since parallel projection is a special case of af®ne map

[20], without loss of generality, we will use af®ne map

instead of parallel projection in the following discussion.

Now we shall prove that two conjugate diameters are

suf®cient to determine a unique conic section. We begin

with a preliminary lemma.

Lemma 1. The two pairs of principal directions of two

corresponding ®elds under an af®ne map are determined

by the corresponding axis of the af®ne map and a pair of

corresponding points.

Proof. Consider two corresponding points A, A 0, and the

corresponding xis p of an af®ne map, arranged as in Fig. 1.

In this ®gure, the perpendicular bisector MO of AA 0 inter-

sects axis p at point O. By the principle of perpendicular

bisector, we have OA� OA 0. Now draw a circle centered at

O with radii OA, which intersects p at points X0 and Y0. From

the de®nition of af®ne maps, we conclude that AX0 and AY0

correspond to A 0X0 and A 0Y0, respectively. Accordingly,

since AX0 ' AY0, A 0X0 ' A 0Y0, we obtain that AX0 ' AY0

corresponds to A 0X0 ' A 0Y . It follows from the above deri-

vation that AX0 and AY0 are the principal directions in one

®eld and that A 0X0 and A 0Y0 are the principal directions of

the other corresponding ®eld.

With all these preparations, we can now prove our main

results.

Theorem 2. A central conic section is uniquely deter-

mined by two conjugate diameters.

Proof. Without loss of generality, we take an ellipse as an

example. Since an ellipse is de®ned by the center point,

major axis, and minor axis [21], the ellipse is therefore

uniquely determined if these geometric parameters can be

found from the given conjugate diameters.

Given two conjugate diameters (see AB and CD in Fig. 2),

it is clear that the center of an ellipse is the intersection point

of the two conjugate diameters. Thus we only need to deter-

mine the major axis and the minor axis of the ellipse. Since

an af®ne map maps two conjugate diameters of an ellipse to

two mutually perpendicular diameters of a circle, it suf®ces

to determine the af®ne image (i.e., circle) of the ellipse from

S.-X. Liu et al. / Computer-Aided Design 00 (2000) 000±000 3
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Fig. 2. Determine an ellipse from two conjugate diameters.
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the conjugate diameters and ®nd the inverse map for every

point on the circle to determine the ellipse.

Referring to Fig. 2, let AB and CD be two given conjugate

diameters, and let the corresponding axis of an af®ne map be

p, which is through the endpoint D of the conjugate diameter

CD and parallel to the other conjugate diameter AB. Let O

be the intersection point of AB and CD. From the de®nition

of af®ne maps, we obtain two perpendicular diameters A 0B 0

and C 0D 0 of a circle which correspond to the conjugate

diameters AB and CD under the af®ne map. The correspond-

ing point O 0 of O is then the intersection of A 0B 0 and C 0D 0.
With the pair of corresponding points O and O 0 and the

corresponding axis p, by Lemma 1, the principal directions

MN and UV of the af®ne map can be determined. Since MN

and UV pass through the center point O of the ellipse and are

perpendicular to each other, they are the major axis and

minor axis of the ellipse, respectively.

By a similar argument, we can determine a hyperbola

from two conjugate diameters.

Corollary 1. A parabola is uniquely determined by a

conjugate diameter and one of its conjugate chords.

Hereafter we shall use the term two conjugate diameters

to encompass the case of one conjugate diameters and a

chord as well.

The proof of Theorem 2 illustrates a new technique for

generating 3-D candidate conic edges from three projection

views. Now we give a theorem on the relationship of conju-

gate diameters of space conic and conjugate diameters of the

projection conic.

Lemma 2. The af®ne ratio [20] of three points on a line is

invariant under af®ne maps.

Referring to Fig. 3, the three points A, B, and C are

collinear. Point B divides the segment AC in the ratio

�ABC� � AB=CB. Assuming A 0, B 0, and C' are the images

of the points A, B, and C, respectively, under an af®ne map,

and that point B 0 divides the segment A 0C 0 in the ratio

�A 0B 0C 0� � A 0B 0

C 0B 0
. By lemma 2, we then obtain

�ABC� � �A 0B 0C 0�.
If we can determine two conjugate diameters of a space

conic from its projection conics, then by Theorem 2, the

candidate space conic is uniquely determined.

Theorem 3. Two mutually perpendicular conjugate

diameters of a projection conic cp are the projections of

two conjugate diameters of its corresponding space conic C.

Proof. It follows from the properties of parallel projec-

tions that the center of a projection conic cp corresponds

to the center of the space conic C, and a diameter of cp

corresponds to a diameter of C. Hence, two mutually

perpendicular conjugate diameters of the projection conic

cp correspond respectively to two diameters of the space

conic C. By Lemma 2 and the de®nition of conjugate

diameter, we can conclude that each of the two diameters

of C bisects chords that are parallel to the other diameter.

Hence they are conjugate diameters. The proof is therefore

completed.

Corollary 2. Two mutually perpendicular conjugate

diameter and chord of a projection parabola are the projec-

tions of a conjugate diameter and a chord of its correspond-

ing space parabola.

3. Reconstruction algorithm

In this section we describe the four steps of our recon-

struction algorithm in detail.

3.1. Preprocessing 2-D data

In practice, three-view engineering drawings can be input

via an image scanner, and the two-dimensional vertices,

edges and line type are segmented by a low-level image

processing stage. Several methods for achieving this have

been reported in [22]; hence for our present work, we assume

such output which describes the geometry of the three views

is available. We assume that center lines of rotational

surfaces or circles (ellipses) are included in the drawing.

Center lines are used to indicate the centers of circles

(ellipses) or the axis of a circular or rotational parts, such

as cylinders. Fig. 4 shows the center lines of a cylinder.

In this step we process the input data and remove certain

redundancies. It performs the following operations:

1. Separate and identify all views

2. Check the data for validity and reduce it to canonical

form with distinct edges and vertices and edges intersect-

ing only in endpoints [10]. If two conics (regard straight

lines as a special form of conics) intersect internally,

calculate the intersection points between the conics and

partition them at the intersection points

3. Determine the extreme points of conic sections, which

are the points that have the maximum or minimum value

in one of the co-ordinate axes

4. Remove redundant curves and combine collinear

curves

S.-X. Liu et al. / Computer-Aided Design 00 (2000) 000±0004

Fig. 3. Af®ne ratio.
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For scanned paper drawings, the 2-D segmented geome-

try should be corrected before reconstruction begins. Such

operations are possible if we associate the dimensions indi-

cated in the drawing with the corresponding geometric

primitives and analyze the geometrical and topological rela-

tions in each 2-D view [23,24]. After these corrections, we

separate and identify each 2-D view. According to the char-

acteristics of three orthographic views, the union of the

projections of all the curves in three views onto a co-ordi-

nate axis produces two intervals (see AB and CD in Fig. 5).

Therefore, the projections of the three views onto the two

co-ordinate axes produce four intervals, two of which are on

the x-axis (AB and CD), and the other two on the y-axis (EF

and GH). Next we draw a vertical line ly between the two

intervals AB and CD and a horizontal line lx between the

other two intervals EF and GH. The view plane is then

divided into four parts by lx and ly, which we denote as

P1, P2, P3, and P4. From the convention of engineering

drawings, the front view is in P1, side view in P2, and top

view in P3. We then separate the three views by collecting

the curves that belong to the same part.

3.2. Generation of wire-frame

In this step all the candidate 3-D vertices and edges that

constitute the wire-frame are constructed. For brevity, we

write 3-D candidate vertices, edges and faces as c-vertices,

c-edges, c-faces, respectively.

We adopt the method described in Wesley [10] and Liu

[16] for reconstructing the c-vertices. A c-vertex is created

from three 2-D vertices, each appearing in one views. Let

Nf � �Nf �x�;Nf �z��, Nt � �Nt�x�;Nt�y��, and Ns �
�Ns�y�;Ns�z�� be 2-D vertices in the front, top, and side

view respectively. If

Nf �x�2 Nt�x�
��� ��� , e; Nt�y�2 Ns�y�j j , e;¼ Nf �z�2 Ns�z�

��� ��� , e �3�

where e is a tolerance that allows for inexact match, then we

know that Nf , Nt, and Ns are the projections of a 3-D vertex

in the different views. A c-vertex �Nf �x�, Ns�y�, Ns�z�� is thus

generated.

Next, we propose a new method for generating c-edges.

We begin by ®nding their matched components in the three

orthographic views. We note that for a 2-D conic in one

view, its matched components in the other two views can

not be obtained by matching the endpoints of the conic, but

can be obtained by matching the extreme points of the

conics. We call this method the extreme point method.

The extreme point method is illustrated in Fig. 6. Let nfi

denote a 2-D vertex in the front view. Similar notations are

introduced for the other two views. The 2-D conic edge lt

with endpoints nt1 and nt2 in the top view corresponds to the

2-D edges nf 0nf 2 and nf 3nf 5 whose two ends match the

extreme points of lt, and not the endpoints of lt which

match the edge. Similarly lt corresponds to the 2-D edges

ns0ns2 and ns3ns5 in the side view.

The next step is to ®nd the c-edges from the 2-D matched

components. Since examining all possible pairs of vertices

would be inef®cient, we use the same strategy as in Shin

[13] to reduce.the number of examinations. That is, for each

2-D conic (line) in the three views, only the pairs of

c-vertices which are generated from the two endpoints of

the 2-D conic edge are checked to determine whether there

are matched components in the other two views. This

greatly reduces the searching space, however, for a given

2-D conic, there could be more than one 2-D matched

S.-X. Liu et al. / Computer-Aided Design 00 (2000) 000±000 5

Fig. 4. Center line.

Fig. 5. Separation of three views.

Fig. 6. The match of conic edges in three orthographic views.
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components in one view. For example, in Fig. 7, fA, tA, sA

and fB, tB, sB are two sets of respectively matched points in

the three views. Simply using any matched component in a

view to generate the c-edges may result in invalid edges. For

example, for the 2-D edge tAtB in the top view, the matched

components in the front view are two edgesfl1, fl2 which are

between fA and fB, and in the view are two edges sl1, sl2

which are between sA and sB. Therefore, we need to ®nd

other points to de®ne a unique 3-D conic edge [15]. Since

during the processing stage, all the 2-D curves are parti-

tioned at their intersection points, we can now assume that

two curves in each view share at most two points (i.e.,

endpoints). Therefore, we can determine a unique 3-D

edge from three distinct 3-D points and two conjugate

diameters of the projection of the 3-D edge in a view. In

Fig. 7, tC in the top view is chosen to uniquely determine

two matched points of tAtB in the other two views.

The mathematical discussion in Section 2 set the back-

ground for developing an algorithm for automatically gener-

ating the c-edges from matched 2-D edges in three views.

We call our method the conjugate diameter method. It

consists of the following steps.

1. (Match). For a 2-D conic in a view, ®nd the 2-D matched

components in the other two orthographic views by the

three-point method.

2. (Generate conjugate diameters in space). For each 2-D

conic in one view, search for the matched line segments

of its major and minor axis in the other two views, then

construct the conjugate diameter (chord) using the

straight line edge generation method described by

Wesley [10].

3. (Generate conic edge in space). From the conjugate

diameters of the 2-D conics, obtain the conjugate

diameters of space conics by Theorem 3 and Corollary

2, determine uniquely a conic edge in space from its two

conjugate diameters.

3.3. Generation of 3-D candidate faces

The c-vertices and c-edges generated in the previous

stage constitute a wire-frame model of the object, but it

does not contain any face information and may contain

some invalid components. Since boundary representations

are generally more useful than wire-frames in geometric

modeling applications [25], we should generate the face

information of the object from the reconstructed wire-

frame. We shall use the term surface to refer to an

unbounded face, and the term face to refer to the region of

a surface that is bounded by an edge loop. We begin this step

by creating all the surfaces that contain the solid's faces

based on the fact that a surface can be determined from

two edges which share a common c-vertex on the surface.

The types of the two edges and their relationships uniquely

determine the type and features of the surface [12]. For

example, two coplanar edges sharing a c-vertex determine

a planar surface. A line (conic) and a non-coplanar conic

constitute a curved surface. If we generate all possible

surfaces at this step, it will cause a steep increase in the

processing time for complex objects. We use the following

property to improve the performance.

Property 1. Each face of a 3-D object corresponds to at

least a closed area in one of the views.

To begin with, we ®nd all closed areas in one view. Next,

for each 2-D closed area identi®ed, we choose two 2-D

edges which share a common 2-D vertex. Furthermore, we

select two c-edges that are generated from these two 2-D

edges (for each 2-D edge, the indices of the c-edges that are

generated from it are stored as an attribute of that edge) and

make sure that the selected two c-edges also share a

common c-vertex. The types of these two edges and their

relationships will determine the type of the surface to be

generated. Finally, we gather all the c-edges that belong to

this surface by only testing those c-edges that are generated

from the 2-D edges in the closed area. After this stage, we

have obtained all the support surfaces for the object and all

the c-edges are contained in these surfaces.

In each surface generated in the previous stage, we must

trace all the edge loops that constitute faces of the solid

object. We propose a method called maximum turning

angle (MTA) to automatically trace the three-dimensional

edge loops. Its basic idea is to ®rst choose a convex c-vertex

and a c-edge that is connected to it, and then search the next

edge using adjacency relationships. As shown in Fig. 8, let

e1 be the current edge being examined, and the direction vi

S.-X. Liu et al. / Computer-Aided Design 00 (2000) 000±0006

Fig. 7. Determine a unique candidate edge.

Fig. 8. Determining the edge to be contained in the current edge loop
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to vj be the traversing direction. When there is more than

one edge that satis®es the surface equation at the vertex vj,

we choose the edge ek which has the maximum turning

angle to e1. The turning angle is the angle by which the

tangent vector of a curved edge has to be rotated at

the common vertex while going from the tangent vector of

the present curved edge to the tangent vector of a connecting

curved edge. The turning angle is calculated around the

hypothetical outer normal of the face at the vertex vj. Coun-

terclockwise rotations are assumed positive. Arrange the c-

edges incidented to vj in descending order of the turning

angle with respect to the selected c-edge e1 and denoted

them as an ordered list E�vj). For example, in Fig. 8,

E�vj� � {e1, ek, ek21, ¼, e2, e1}. The next adjacent edge

is the edge in E(vj) that has the maximum turning angle to

the current examined edge. In Fig. 8, ek has the maximum

turning angle to e1, ek21 has the maximum turning angle to

ek, and so on. This is useful for determining the next c-edge

in the process of searching an edge loop.

Next, we de®ne what we mean by a point is to the left of

an edge, which is useful for choosing the ®rst edge of an

edge loop on a face.

De®nition 8. (left). A directed line is determined by an

ordered pair of points AB (see Fig. 9). A point C is to the left

of AB if and only if the triangle ABC has a positive area.

Then, the triple �A;B;C� forms a counterclockwise circuit.

If both the endpoints of a line segment CD are to the left of

or on the lineAB, we say CD is to the left of AB.

The MTA method ef®ciently ®nds the edge loops in the

wire-frame by avoiding an exhaustive search. It consists of

the following six steps.

Step 1. Let SF be a surface in a solid object. We denote

the set of edges on the surface SF as E(SF). Choose a convex

vertex vi (usually the vertex that has the minimum x-co-

ordinate) of SF as the starting vertex, and let vs � vi.

Step 2. Determine all the edges incident to each vertex v,

and denote it as AE(v). If uAE�v�u . 2, determine the

ordered list E(v) for the vertex v.

Step 3. If uE�SF�u . 0, select the starting edge to be an

edge es�vs, vj� in AE(vs) that has not been chosen or has been

chosen only once. If the edge has not been selected, we must

ensure that all the other edges are to its left, so that a coun-

terclockwise orientation can be assumed, which avoids

producing edge loops with other edges in E(SF) subdividing

them. If es has been selected once, assign vj � vs, vs � vj.

Let vsvj
��! be the current direction of travel, go to step 4.

Step 4. If uAE�vj�u � 2, choose the other edge that is adja-

cent to vj; otherwise, choose the edge with the maximum

turning angle in E(vj) as the next tracing edge. Let the

chosen edge be el�vj, vl�.

Step 5. If vl ± vs, let vj � vl and go to step 4; otherwise,

construct an edge loop, and delete from E(SF) those edges

that satisfy the deleting conditions given below:

1. it is the starting edge of an edge loop;

2. one of its endpoints has degree 1;

3. it has been chosen twice. A c-edge may be regard as

if it is shared by two distinct faces on the same

surface [13] such as c1 in Fig. 11(a) because of the

loss of information during the projection. For this

reason, a c-edge may at most be chosen twice to the

opposite directions.

In the process of tracing the edge loop, if uE�v�u � 2

for all the vertex v in the edge loop, choose an unse-

lected convex vertex of SF and record it as vns; other-

wise record the ®rst encountered vertex whose degree is

greater than 2 as vns. The vertex vns will be the entry for

tracing the next edge loop.

Step 6. If uE�SF�u . 0, then treat vns as vs and go to step 3.

Otherwise stop the algorithm.

Remark:. When arranging AE(vi) in descending order of

the turning angle with respect to an arbitrary selected c-edge

e1, we avoid arc sine function by comparing their dot

products with the co-ordinate axes, which is illustrated as

follows. Let the tangent vectors of the edges adjacent to vi be

t1, t2,¼tk. Let t1 be the x-axis and the outer normal u of the

surface at vi be the z-axis, then the y-axis is u £ t1. Let nx and

ny be the unit vectors in the direction the x-axis and the y-

axis respectively, the angle between e1 and ei be ui, we then

have

nx´ei � cosui

ny´ei � sinui

(
�i � 2;¼; k� �4�

by comparing cosui and sinui i� 2,¼k we can determine

the order of these angles.

Fig. 10 shows the edge loop generation process based

on the MTA method. The dashed lines in the ®gure are

edges that are deleted in the step; three edge loops are

traced in this example, which are shown at the bottom

of the ®gure.

S.-X. Liu et al. / Computer-Aided Design 00 (2000) 000±000 7

Fig. 9. C is to left of AB if the triangle ABC has a positive area.
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3.4. Searching for solids

The algorithm to be discussed works for boundary repre-

sentations of solids with curved surface. More rigorously,

we assume that our reconstructed objects are manifold

solids, i.e., they satisfy the following criteria [26,27]:

1. Every edge in a manifold solid belongs to exactly two

faces and the orientation of the edge is inverted by each

face;

2. Faces may not intersect each other except at common

edges or vertices.

Since the projection process may introduce ambiguity

into the reconstruction problem, the reconstruction process

usually generates many more 3-D vertices and edges that are

not in the original objects. Therefore, we must detect and

delete pseudo elements in the reconstructed wire-frame.

De®nition 9. (non-manifold edge). If an edge in the wire-

frame is shared by only one c-face, or more than two

c-faces, then the edge is called a non-manifold edge.

We adopt a heuristic approach in this step to reduce the

graph search space and the occurrences of backtracking.

Initially we use depth information to remove some false c-

edges and c-faces. The depth information that is deduced

from the type of line, namely dashed and solid, in the draw-

ing is fully utilized at this stage in order to reduce the

searching space. For example, if the projection of a c-edge

on the front view is a dashed curve, there should be at least

one c-face that obstructs the c-edge when viewing from the

negative direction of the y-axis. If there is no such c-face,

then this c-edge must be removed. On the other hand, we

could conclude that the c-faces that obstruct the visible c-

edges are pathological and should be deleted. The remaining

pseudo faces in the wire-frame are then completely removed

by a divide-and-conquer approach based on the Moebius

rule, the de®nition of manifold, and the characteristics of

engineering drawings. The Moebius rule says that each edge

in a manifold solid belongs to two faces and the orientation

of the edge is inverted by each face [12]. Therefore, the

divide-and-conquer algorithm serves to generate all possible

objects by detecting and removing non-manifold edges in

the wire-frame. This algorithm is implemented by traversing

the whole graph of possible face con®gurations, and back-

tracking when ever necessary, to ®nd all possible solutions,

while resolving ambiguities. The edge count of a 2-D curve

in a view represents how many c-edges are projected onto

that 2-D curve. While deleting the non-manifold edges, edge

counts are used to dynamically monitor the projections of

the wire-frame to determine whether or not it is identical

with the input engineering drawing [12].

Fig. 11 illustrates the entire reconstruction. A three-view

engineering drawing and the wire frame reconstructed from

it is shown in Fig. 11(a) and (b). shows the edges in the wire

frame. The faces traced in this wire frame are given in Fig.

11(c) and (d)±(l). illustrate the steps for ®nding the 3-D

object from the wire frame. To begin with, we use the

depth information in the engineering drawing to check the

validity of the c-edges and c-faces in the wire frame. In the

wire frame, the projections of the c-edges e1, e12, and e23 in

the top view are the dashed conic c1 shown in Fig. 11(a).

The c-edge e1 is chosen to be the starting edge as in

Fig. 11(d), it is invalid since there is no c-face that occludes

it. Therefore the c-faces f1, f3, and f4 which include e1 are

invalid. Since the faces f1 and f3 which are adjacent to the

invalid edge e1 are coplanar, we combine those two faces to

a larger face f13 and assume this face is valid. The c-edge e11

is adjacent exactly to two faces f5 and f14, hence the c-faces

f5 and f14 and the c-edge e11 are valid by the Moebius rule.

Moreover, if the invalid face f4 is deleted, the c-edge e5 is

only adjacent to f2 and e10 is adjacent to f16. According to

the de®nition of manifold, e5, e10, f2, and f16 should be

deleted as shown in Fig. 11(e). Then non-manifold c-edge

e18 becomes the starting edge for the next decision process

as shown in Fig. 11(f). The face f14 is valid; this lead to two

possible cases: assume f14, f8 to be valid and f15 to be pseudo

as in Fig. 11(g); assume f14, f15 to be valid and f8 to be

pseudo as in Fig. 11(j). For the ®rst case, f15 being valid

S.-X. Liu et al. / Computer-Aided Design 00 (2000) 000±0008

Fig. 10. Top: the process for edge loop generation. Bottom: three edge loops constructed from this surface.
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causes the faces f10 and f13 to be pseudo as in Fig. 11(h).

Each of the c-edges e14 and e25 is adjacent exactly to two

coplanar faces, so they are deleted from the wire frame.

Thus a solution is found in Fig. 11(i). Similarly, for the

second case, we could detect that the c-edges e12±e18, e21,

e23, e26, e27, and the c-faces f6, f7, f8, f9, f17 are pseudo as

shown in Fig. 11(j) and (k). Thus another solution is found

as shown in Fig. 11(l). This solution is invalid since it is not

identical with the input three-view engineering drawing.

4. Implementation

Based on the algorithm described above, we have devel-

oped a 3-D reconstruction program on a personal computer

platform. A number of examples have been tested. The

implementation and examples are restricted to three ortho-

graphic views and objects with quadric and toroidal

surfaces. Several examples are given to demonstrate various

cases that could be handled by our method.

Fig. 12 shows a three-view engineering drawing that

contains straight lines, circular arcs, elliptical arcs, and

hyperbolas; our algorithm generates a unique solution.

Fig. 13 shows a mechanical part with planar and cylindrical

faces, the semi and quadrant cylindrical faces meet the

planar faces tangentially. Fig. 14 shows an example with

cylinders (including the semi cylinder) whose axes are not

parallel to any of the three co-ordinate axes.

Figs. 15 and 16 show the reconstruction of some real

mechanical parts. The axes of the cylindrical surfaces that

S.-X. Liu et al. / Computer-Aided Design 00 (2000) 000±000 9

Fig. 11. (caption on following page)
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are perpendicular to the slant plane in Fig. 16 are not parallel

to any of the three co-ordinate axes. The example in Fig. 17

illustrates the use of depth information. Without depth infor-

mation, there are two possible solids. However, by referring

to the dashed lines in the top view, a unique solution is

generated, i.e., solution 1 is the ®nal solution.

The next example is intended to demonstrate the distinc-

tion between our method and Shin's method. The result is

shown in Fig. 18. It follows from the visual comparison that

Shin's method will result in approximation errors in the case

of curved surfaces. If curved shapes are approximated by

more polygons, the errors may be reduced. However, this

S.-X. Liu et al. / Computer-Aided Design 00 (2000) 000±00010

Fig. 11. Finding the solid(s) in the wire frame. (a) A three-view engineering drawing and the wire frame constructed from it, (b) The edges in the wire frame,

(c) The faces traced in the wire frame and their edge information, (d)±(l) Steps for determining the state of the edges and faces.

Fig. 12. Engineering drawings and reconstructed model for object 1.
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Fig. 13. Engineering drawings and reconstructed model for object 2.

Fig. 14. Engineering drawings and reconstructed model for object 3.

Fig. 15. Engineering drawings and reconstructed model for object 4.

Computer-Aided Design ± Model 5 ± Ref style 3 ± AUTOPAGINATION 2 13-12-2000 15:26 jd6010 CF Alden



UNCORRECTED P
ROOF

tends to increase the computation. Compared to Shin's

work, our approach avoids the drawbacks of polyhedron

approximation by utilizing the characteristics of engineer-

ing drawings and the geometric properties of conic curves.

Moreover, our method covers a larger category of solid

objects.

Finally, we compare our method with other methods in

terms of the input primitives allowed and the restrictions on

the axes of conics and curved surfaces. The results are

shown in Table 1.

5. Conclusion and future work

We present the ®rst solution to the problem of recon-

structing solids from drawings that places no restrictions

on the axes of curved surfaces and conics. The main features

of the algorithm are that it extends the range of objects that

can be reconstructed and improves the speed of the recon-

struction. To support a wide scope of general 3-D objects,

we propose a matching principle and a novel methodology

for generating the conic edges. Furthermore, we introduce

S.-X. Liu et al. / Computer-Aided Design 00 (2000) 000±00012

Fig. 16. Engineering drawings and reconstructed model for object 5.

Fig. 17. Three pairs of circular arcs intersect in the reconstructed wire-frame. Before using the depth information, there are two possible solutions. Referring to

the dashed line in the top view, a unique solution is acquired.

Fig. 18. A comparison illustrating the exactness of our approach. On the left

is a solid object reconstructed by Shin's method, while on the right is our

results.

Table 1

Comparison of the input data and restrictions on the axis

Methods Input data Restrictions

Line Circle Ellipse Parabolas Hyperbolas

Shin Y Y N N N Parallel to one co-ordinate axis

Oh Y Y N N N Parallel to one co-ordinate axis

Our method Y Y N N N No restrictions
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some decision and heuristic rules to generate the ®nal 3-D

objects.

The development of a prototype reconstruction system is

reported in this paper. In the prototype system, wire-frame

models, surface models, and solid models are constructed

from orthographic views in that order. The conjugate

diameter method is introduced to increase the ef®ciency of

edge generation. In addition, the depth information that is

deduced from the type of line, namely dashed and solid, in

the drawing is fully utilized in order to reduce the searching

space. Finally, we handle the problem of ambiguities in

wire-frame representations of engineering drawings by the

de®nition of manifold and Moebius rule. This algorithm is

attractive when exhaustive examination of all combinations

is not practical.

We regard the work presented as initial, there are

improvements to be made as well as many directions to

pursue. The future work will be focused on extending the

range of objects to be reconstructed. Geometric and topolo-

gical information from each component should be fully

exploited to improve the ef®ciency of the reconstruction.

Better use of adjacency information may lead to more ef®-

cient algorithms. In addition, we should make full use of the

annotation in engineering drawings since it is a formal,

standard language which expresses a designer's design

purpose.
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