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Fig. 1. CNNVis, a visual analytics system that helps experts understand, diagnose, and refine deep CNNs.

Abstract— Deep convolutional neural networks (CNNs) have achieved breakthrough performance in many pattern recognition tasks
such as image classification. However, the development of high-quality deep models typically relies on a substantial amount of
trial-and-error, as there is still no clear understanding of when and why a deep model works. In this paper, we present a visual analytics
approach for better understanding, diagnosing, and refining deep CNNs. We formulate a deep CNN as a directed acyclic graph. Based
on this formulation, a hybrid visualization is developed to disclose the multiple facets of each neuron and the interactions between them.
In particular, we introduce a hierarchical rectangle packing algorithm and a matrix reordering algorithm to show the derived features of
a neuron cluster. We also propose a biclustering-based edge bundling method to reduce visual clutter caused by a large number of
connections between neurons. We evaluated our method on a set of CNNs and the results are generally favorable.

Index Terms—Deep convolutional neural networks, rectangle packing, matrix reordering, edge bundling, biclustering

1 INTRODUCTION

Deep convolutional neural networks (CNNs) have demonstrated
significant improvements over traditional approaches in many pattern
recognition tasks [34], such as image classification [22, 33] and video
classification [30, 59]. More recently, deep CNNs have been employed
as function approximators in deep reinforcement learning to extract
robust representations and help make decisions, which has led to human-
level performance in intelligent tasks such as Atari games [43] and the
game of Go [48]. However, a deep CNN is often treated as a “black box”
model because of its incomprehensible functions and unclear working
mechanism [5]. It is generally difficult for machine learning experts to
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understand the role of each component (neuron, connection) due to the
large number of interacting, non-linear parts in a CNN. Without a clear
understanding of how and why these networks work, the development
of high-performance models typically relies on a time-consuming
trial-and-error procedure [4, 5, 58]. For example, training a single deep
CNN on a large dataset may take several days or even weeks.

There are two technical challenges to understand and analyze deep
CNNs. First, a CNN may consist of tens or hundreds of layers (depth),
with thousands of neurons (width) in each layer, as well as millions
of connections between neurons. Such large CNNs are hard to study
due to the sizes involved. Second, CNNs consist of many functional
components whose values and roles are not well understood either as in-
dividuals or as a whole [5]. In addition, how the non-linear components
interact with each other and with other linear components in a CNN
is not well understood by experts. In most cases, it is hard to summa-
rize reusable knowledge from a failed or successful training case and
transfer it to the development of other relevant deep learning models.

To tackle these challenges, we have developed an interactive, visual
analytics system called CNNVis, which aims to help machine learning
experts better understand, diagnose, and refine CNNs. In CNNVis, diag-
nosis helps experts analyze a training process that has failed to converge;
while refinement aims to find a potential direction to improve model ac-
curacy. Based on the characteristics of a deep CNN, we formulate it as



a directed acyclic graph (DAG), in which each node represents a neuron
and each edge represents the connection between neurons. In order to vi-
sualize a large CNN, we first cluster the layers in the network and select
a representative one from each layer cluster. We then cluster neurons in
each representative layer and select several representative neurons from
each neuron cluster. On the basis of the DAG representation, we de-
velop a hybrid visualization to disclose the interactions between neurons
and the multiple facets of each neuron by indicating its role for different
types of images. In particular, we have developed a hierarchical rectan-
gle packing algorithm to show the derived features of a neuron cluster.
We have also designed a matrix reordering algorithm based on the
Held-Karp algorithm [23] to demonstrate the cluster patterns in the acti-
vations of each neuron cluster. Here, the activation is the output value of
a neuron, which is determined by the activation function that transforms
the input value to the output value of the neuron. Moreover, we have
proposed a biclustering-based edge bundling method to reduce visual
clutter caused by the large number of connections between neurons.

To support our research, we used image classification as an example
and conducted three case studies with experts. The case studies have
shown that CNNVis allows experts to better explore and understand
a deep CNN, including the role of each neuron and the connections
between neurons. For example, the neurons in the lower layers are
learned to detect simple patterns such as corners and stripes. Further-
more, experts can diagnose the potential issues of a model and refine
a CNN, which enables more rapid iteration and faster convergence in
model construction.

The key technical contributions of this work are:
• A visual analytics system that helps experts understand, diag-

nose, and refine deep CNNs.
• A hybrid visualization that combines a DAG with rectangle

packing, matrix visualization, and a biclustering-based edge
bundling method.

2 RELATED WORK

To help experts gain a better understanding of a deep CNN, researchers
in the field of computer vision have strived to illustrate the learned
features of each neuron, which is represented by part of a real image
or a synthesized image. Existing methods can be classified into two
categories, namely, code inversion [15, 41, 59] and activation maxi-
mization [17, 49, 58].

The code inversion method synthesizes an image from the activation
vector of a specific layer, which is produced by a real image. For
example, Zeiler et al. [59] utilized a multi-layered Deconvolutional
Network [60] to project the activations onto the input pixel space.
However, a simple projection without any consideration for priors
will produce images that do not resemble natural images. To solve this
problem, Mahendran et al. [41] proposed incorporating several natural
image priors like α-norm and total variation to make the reconstructed
images more realistic. Recently, Dosovitskiy et al. [15] trained a CNN
to reconstruct the images from the activations. They argued that a
CNN can learn more powerful priors and have better performance than
manually defined priors.

The activation maximization method aims to find an image that max-
imally activates a given neuron. It can be modeled as an optimization
problem over the image space. Similar to the code inversion method,
natural image priors are used as regularization during the optimization
to obtain realistic images. As a result, most activation maximization
methods focus on defining the regularization term using natural image
priors [17, 58]. For example, Erhan et al. [17] constrained the L2-norm
of the image to be a constant. Yosinski et al. [58] defined several more
powerful priors, including Gaussian blur, clipping pixels with a small
norm, and clipping pixels with a small contribution.

The aforementioned methods employ a grid-based representation to
display the neuron features. Although they can show the reconstructed
intermediate states of each layer, they fail to disclose the inner working
mechanisms of CNNs, especially the role of each neuron for different
types of images and the interactions between neurons. Unlike these
methods, we formulate a deep CNN as a DAG. Based on the DAG
representation, we have developed a hybrid visualization that consists

of rectangle packing, matrix ordering, and biclustering-based edge
bundling. Empowered by the hybrid visualization, our visual analytics
approach well discloses the multiple facets of each neuron and the
interactions between them, which is very useful for understanding the
inner working mechanism of a deep CNN.

In the field of visual analytics, researchers have developed
interactive image classification systems [3, 47, 51]. These systems
provide users with visual interfaces to guide them to choose new
training examples and evaluate the model quality. They usually employ
line charts or scatter plots to demonstrate the model quality. As a
result, none of these systems can be directly applied to analyze the
inner mechanisms of deep CNNs because they fail to illustrate the
neurons and the connections between them.

More relevant to our work is to visualize neural networks as
node-link diagrams [21, 56]. For example, Tzeng et al. [56] employed a
DAG to represent a neural network. Although this visualization method
can illustrate the interactions between neurons, it suffers from serious
visual clutter when handling large neural networks. To address this
issue, we improved existing DAG layout methods [18, 40, 52, 55, 57].
In particular, we first cluster the layers in the network and select a
representative from each layer cluster. Then we cluster neurons in
each representative layer and select several representative neurons
from each neuron cluster. Based on BiSet [53], we have proposed
a biclustering-based edge bundling method to reduce visual clutter
caused by a large number of connections between neurons.

3 BACKGROUND
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Fig. 2. The typical architecture of a CNN.

In this section, we briefly introduce the architecture of CNNs and sev-
eral basic concepts, which will be useful for the subsequent discussion.

CNNs are a special kind of neural network for processing data that
has a known, grid-like topology [34]. A typical CNN is structured as a
series of stages (Fig. 2).

In the first few stages, there are two kinds of layers: convolutional
layers and pooling layers. In a convolutional layer, each neuron is
connected to local patches of the previous layer through a set of weights.
The result of this local weighted sum is then input to an activation
function. An activation function is a non-linear transformation that
can prevent CNNs from learning trivial linear combinations of the
inputs. While the convolutional layer aims to detect local combinations
of features from the previous layer, the pooling layer aims to merge
semantically similar features into one. A pooling operation computes
a summary statistic (e.g., maximum) of a local patch of the input.
Adopting pooling in a CNN has two benefits. First, pooling allows the
output to vary very little when the input vary in position and appearance.
Second, pooling can significantly reduce computational cost when the
network contains many layers.

Several stages of convolution, activation function, and pooling are
stacked, followed by one or several fully connected layers. Then, at the
output of the model, a loss function is adopted as a means of measuring
performance, namely, the difference between the output of a CNN and
a true image label (i.e., the loss). The goal of training a CNN is to mini-
mize the loss function. This is usually achieved with stochastic gradient
descent [7], an optimization method that first calculates the gradient of
the loss function with respect to the weight of each edge in the network
and then updates the weight according to the computed gradient.

4 CNNVIS

CNNVis was designed in consultation with a team of deep learning
experts (six researchers) over the course of twelve months. For sim-
plicity’s sake, we denote these experts as Ei (i = 1,2, · · · ,6). We held
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Fig. 3. CNNVis pipeline.

discussions every two weeks. Three co-authors of this paper are also
members of the team. The development of CNNVis was triggered by
their need to make sense of the inner mechanisms of deep CNNs and
their dissatisfaction with the state-of-the-art tools.

Common deep learning frameworks include Caffe [28], Theano [6],
Torch [10], and TensorFlow [1]. Researchers can use these frameworks
to train, debug, and deploy CNNs. Although the deep learning frame-
works output high-level statistical information, such as training loss, as
well as debugging information, such as the learned features of neurons
and the gradients of weights, it fails to disclose the role of each neuron
for different categories of images and how the neurons work together.
Accordingly, if a training process fails, it is difficult for experts to figure
out what is wrong with the current model design. The experts com-
mented that the development of high-quality CNN models is usually
a trial-and-error procedure. To solve this problem, they expressed the
need for a tool that supports the following functions:
• Understanding: study the influence of the network architecture;
• Diagnosis: diagnose a training process that failed to converge;
• Refinement: find a potential direction to improve the model.

4.1 Requirement Analysis
We identified the following high-level requirements based on our dis-
cussions with the experts and previous research.
R1 - Providing an overview of the learned features of neurons. All
the experts commented that an overview of the learned features of neu-
rons is necessary to begin their analysis (e.g., diagnosis or refinement
of the model). They usually examine the quality of each learned feature
layer by layer to discover potential problems. However, such an exami-
nation can be very difficult for a deep CNN with tens or hundreds of
layers and thousands of neurons in a layer. As a result, they stated the
need to cluster neurons into clusters so they can gain a quick overview
of the learned features of each cluster.
R2 - Interactively modifying the neuron clustering results. Since
the clustering algorithm may be imperfect and different users may have
different needs, experts need to interactively modify the clustering
results based on their knowledge. Expert E2 commented that when
examining the training results of a CNN, he found a neuron for detecting
a color patch in a cluster that mainly consists of neurons for detecting
black and white local patterns (Fig. 1B). To increase the clustering
accuracy and better compare these clusters, he moved the neuron to a
cluster that mainly consisted of neurons for detecting color patches.
R3 - Exploring multiple facets of neurons. Previous work mainly
focused on visualizing the learned features of neurons. In addition to
this feature, the experts also requested the ability to view other facets
of neurons. For example, expert E1 said, “In addition to the learned
features, other numerical features such as activation (of a neuron)
can also help me better understand its role in a classification task.”
During the discussion, we gradually identified that the major facets
of interest are the learned features (all the experts), activations (E1,
E3, E4, E5, E6), and contributions to the final result (all the experts).
Visually illustrating them can help experts gain a more comprehensive
understanding of the roles of neurons.
R4 - Revealing how low-level features are aggregated into high-
level features. In a CNN, neurons in lower layers learn to detect simple
features such as stripes or corners, neurons in middle layers learn to
detect a part of an object, and neurons in higher layers learn to detect a
concept (e.g., a cat). This is achieved with a local connectivity pattern
between neurons of adjacent layers, which means the inputs of neurons
in layer m are from a subset of neurons in layer m−1. As a result, the

experts wanted to learn how neurons in adjacent layers interact with
each other and aggregate the low-level features into high-level features.
Previous research has also shown that analyzing such connections can
help experts understand how a large number of non-linear parts interact
with each other [56]. A large CNN may contain millions of connections
between neurons. If we display all of them, it is difficult to discern an
individual connection due to visual clutter caused by excessive edges
and edge crossings. Thus, the experts requested the ability to examine
the major trends among these connections.
R5 - Examining the debugging information. In the discussions, the
experts expressed the need to examine the debugging information of the
deep model. Expert E3 said, “I often examine the debugging informa-
tion such as the gradients, to diagnose a training process that failed to
converge.” In addition to gradients, showing other derived values such
as the relative changes of weights, was also requested by the experts.
The amount of debugging information is usually huge. For example,
there are millions of gradients. It is very hard to examine them one
by one and develop a full understanding. As a result, the experts also
requested having an overview of such debugging information. This
need is consistent with the findings of previous research [5, 20].

4.2 System Overview

The list of requirements has motivated us to develop a visual analytics
system, CNNVis, consisting of the following components:
• A DAG formulation module that converts a CNN to a DAG and

aggregates neurons and layers for an overview (R1,R4);
• A neuron cluster visualization module that discloses multiple

facets of each neuron (R3);
• A biclustering-based edge bundling that reduces visual clutter

caused by a large number of connections (R4);
• An interaction module that provides a set of interactions such as

interactive clustering result modification (R2) and shows debug-
ging information on demand (R5).

As shown in Fig. 3, CNNVis takes a trained CNN and the corre-
sponding training dataset as the input. The input CNN is formulated
as a DAG with each node representing a neuron and each edge repre-
senting the connection between neurons. To effectively present a large
CNN, the DAG formulation module clusters the neurons in each layer.
The clustered DAG is then passed to the neuron cluster visualization
module. This module employs a rectangle packing algorithm to show
the learned features of each neuron in a cluster and a matrix visualiza-
tion to depict the activations of neurons. Next, a biclustering-based
edge bundling clusters the edges to reduce visual clutter. Users can also
interact with the generated visualization for further analysis.

The visualization is shown in Fig. 1. The large rectangle with packed
images represents a neuron cluster. An “in-between” layer between the
input and output neuron clusters is used to represent the biclustering-
based edge bundling result (Fig. 1F). With this visualization, the expert
can get an overview of the model structure as well as the learned feature
of each layer. For example, the expert found that the neurons in the
lower layers learned to detect low-level features such as corners, color
patches, and stripes (Fig. 1A). He identified a neuron for detecting a
color patch in a cluster that mainly consisted of neurons for detecting
black and white local patterns (Fig. 1B). To better compare the neurons
that detect color patches, he dragged the neuron to a cluster that mainly
consisted of neurons for detecting color patches (Fig. 1C).
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Fig. 4. Illustration of the DAG formulation.

5 DAG FORMULATION

A CNN can be formulated as a DAG, where each node represents
a neuron and each edge represents the connection between neurons.
To effectively present a large CNN with tens or hundreds of layers
and thousands of neurons in each layer, we first aggregate adjacent
layers into groups. There are several ways to do this aggregation. For
example, we can classify layers by merging two adjacent convolutional
layers that have a small difference between their activation variance.
We can also divide layers into groups at each pooling layer. In our
current implementation, we employ the second method. In addition,
the experts are interested in the output of an activation layer instead
of that of a convolutional layer. As the outputs of these two layers
have a one-to-one mapping relationship, we merge these two layers and
simply show the output of the activation layer (Fig. 4).

We then cluster the neurons in each layer with the aim of grouping
neurons with similar roles together. We assume that neurons with
similar activations have similar roles. Directly using these activations
to cluster the neurons is very time-consuming as there can be millions
of images in the training set. Thus, we aggregate the activations into
an average activation vector over the set of classes in the training set.
In particular, suppose the training samples can be categorized into m
classes: c1,c2, ...,cm. The training samples of class ci is represented by:
Si = {s(i)1 ,s(i)2 , · · · ,s(i)Ni

}, where Ni is the number of training samples in
class ci. We first process each training sample s(i)j through the network
and obtain the activation of neuron n: an(s

(i)
j ). Then we calculate the

average activation an(ci) of neuron n on class ci by:

1
Ni

Ni

∑
j=1

an(s
(i)
j ). (1)

Next, we combine each average activation into an m-dimension
real-valued activation vector ~an = [an(c1),an(c2), ...,an(cm)].

Finally, we cluster the neurons based on the derived activation vec-
tors. In CNNVis, we employ two widely used clustering methods,
K-Means [42] (parametric clustering) and MeanShift [11] (nonparamet-
ric clustering). The second method does not require prior knowledge of
the number of clusters. Thus, it is applicable when experts do not know
the number of clusters. To better present each neuron cluster, we select
several representative neurons that are closer to the cluster centroid.

6 VISUALIZATION

6.1 Overview
Based on the aforementioned requirements (Sec. 4) and the DAG formu-
lation, we have designed a hybrid visualization (Fig. 5) that illustrates
neuron clusters (nodes) and the connections between neurons (edges).

Each neuron cluster is represented by a large rectangle (Fig. 5A),
which can be analyzed from multiple facets, such as the learned features,
activations, and contributions to the final result (R3). Specifically, we
have adopted a rectangle packing algorithm to place the learned features
of neurons in a neuron cluster, where each learned feature is encoded
by a smaller rectangle (Fig. 5B1). Neuron activations are visualized
as a matrix visualization (Fig. 5B2). Users can switch between the
rectangle packing representation and the matrix visualization to explore
different facets of the neurons.

To reduce visual clutter caused by dense edges and their crossings,
we have developed a biclustering-based edge bundling algorithm (R4).
For each layer, we first generate the biclusters between the input neuron
clusters and output neuron clusters. Inspired by BiSet [53], we have
also added an “in-between” layer between the input neuron clusters

fc6 fc6

Test Train

fc5 relu5conv41 relu41conv31 relu31conv21 relu21conv11 relu11data

C A

B1 B2

Fig. 5. Visualization overview: A is a neuron cluster, B1 and B2 are two
facets of a neuron cluster, and C is an in-between layer to represent the
biclusters of edges.

and output neuron clusters (Fig. 5C). In this layer, each bicluster is
treated as a node in the DAG and is represented by a small rectangle.

In CNNVis, we employ the layout algorithm in TextFlow [12, 13]
to calculate the position of each node (e.g., neuron cluster or bicluster)
(R1). We also provide a set of interactions to facilitate the exploration
of a deep CNN (R2, R5).

Next, we will introduce the neuron cluster visualization and
biclustering-based edge bundling in detail.

6.2 Neuron Cluster Visualization
6.2.1 Learned Features as Rectangle Packing
Computing learned features of neurons. We employ the method
used in [19] to compute the learned feature of a neuron because it is fast
and the results are easy to understand. We also compute the activations
of each neuron on a large set of image patches (e.g., sampled from
the training set) and sort the patches in decreasing order according to
their activations. To help experts better understand the role of each
neuron, we select the top-5 patches with the highest activation scores
to represent the learned feature of that neuron. By default, we show
the top patch for a neuron and allow users to switch among these five
patches. Other methods for computing the learned feature [41, 59] can
easily also be integrated into CNNVis.
Layout. A straightforward way to visualize the learned features (image
patches) is to employ a grid-based layout where each image patch is
represented by a rectangle of the same size [58, 59]. However, this
method fails to emphasize the important neurons.

To tackle this issue, we formulate the layout of image patches as a
rectangle packing problem, aiming to pack the given rectangles into an
enclosing rectangle of a minimum area. We use the size of an image
patch to encode the importance of the corresponding neuron because
size is among the most effective visual channels [44]. In CNNVis, we
provide several options to define the importance of a neuron, including
its average or maximal activation on a set of classes and its contribution
to the final result [37].

Existing rectangle packing algorithms [26, 31] can handle a small
number of rectangles well (e.g., 15 rectangles in less than 0.1s [26]).
However, the computing time grows exponentially as the number of
packed rectangles increases (e.g., 25 rectangles in more than one
hour [26]). Since a neuron cluster may consist of hundreds or even
thousands of neurons, existing rectangle packing algorithms cannot
directly be applied to our visualization.

To solve this problem, we have developed a hierarchical rectangle
packing algorithm. The basic idea of the algorithm is to divide the

Hierarchical Clustering  Treemap Layout  Rectangle Packing

Fig. 6. Illustration of hierarchical rectangle packing.



problem into several smaller sub-problems. Each sub-problem can be ef-
ficiently solved by the state-of-the-art rectangle packing algorithm [26].
Specifically, our algorithm contains the following steps (Fig. 6).
Step 1: Hierarchical clustering. In this step, we perform a hierarchical
clustering to divide the image patches into several groups. Specifically,
we start with the cluster containing all of the neurons. Then we repeat-
edly split a cluster until the number of neurons in it is smaller than
a threshold. This cluster splitting is done with a widely used graph
clustering method [46].
Step 2: Computing the layout area for each cluster. Based on the
hierarchical clustering results, we compute the layout area for each
sub-cluster using a Treemap layout algorithm [29].
Step 3: Rectangle packing of each cluster. In this step, we compute
the position and size for each image patch using the state-of-the-art
rectangle packing algorithm [26].

6.2.2 Activations as Matrix Visualization
In our first prototype, we simply encode the activation of a neuron
according to its size. However, the experts we consulted were not
satisfied with such a design because it failed to help them compare the
roles of the neurons for different classes of images. To allow experts
to compare different neurons, we stack the average activation vectors
of neurons into an activation matrix, where each row is an average
activation vector of a neuron. Accordingly, a matrix visualization
is employed to visually illustrate the activation of the neurons. In
particular, the color of a cell in the i-th row and j-th column represents
the average activation of the i-th neuron ni in class c j.

This design was then presented to our experts for evaluation. Overall,
they liked the matrix visualization that provides a global overview of the
activations for different classes. Their major concern was that the cur-
rent visualization cannot reveal the cluster patterns in the activations of
a neuron cluster. To solve this problem, we developed a matrix reorder-
ing algorithm that can visually reveal cluster patterns within the data.
Matrix Reordering. The order of columns (classes) should be con-
sistent in different neuron clusters. Otherwise, experts are unable to
directly compare the roles of neurons in two neuron clusters because of
the different order of classes (columns). As a result, we only reorder
the rows (neurons) in the matrix.

The basic idea of our algorithm is to maximize the sum of the
similarities between adjacent neurons in the matrix. The aim is to place
neurons with similar activations close to each other, thus revealing
the cluster pattern in the neuron cluster. Given neuron cluster C =
{n1,n2, · · · ,nNC}, the goal of the reordering is to find a row index π(i) for
each neuron ni, to better reveal the cluster pattern in a neuron cluster.
For row r in the matrix, we denote its corresponding neuron as n

π−1(r).
To achieve this goal, we try to maximize the sum of the similarities
between adjacent neurons in the matrix:

max
NC−1

∑
r=1

sim(n
π−1(r),nπ−1(r+1)), (2)

where sim() is the similarity function between two neurons. In CNNVis,
we adopt the widely used cosine similarity.

This combinational optimization problem can be solved by the Held-
Karp algorithm [23] with a time complexity of O(2NC ·N2

C), where NC
is the number of neurons. The problem of directly applying it in our
system is that we may have hundreds of neurons in a neuron cluster and
the running time of the algorithm is very long. Thus, we developed a
divide-and-conquer method to accelerate the algorithm, which consists
of the following steps.
Divide. If the number of neurons in a cluster is too large to be efficiently
solved via directly running the Held-Karp algorithm, the cluster is
divided into several sub-clusters by a widely used graph clustering
method developed by Newman [46].
Conquer. Computing the ordering of sub-clusters by running the Held-
Karp algorithm.
Combine. Merging the ordering of sub-clusters into a global ordering.

Fig. 7 shows one result generated using our reordering method. With
this method, several clusters can easily be detected.

Before Reordering After Reordering

inNeuron

jcActivation on Class

...
...

(a) (b)

Fig. 7. Matrix reordering: (a) before reordering; (b) after reordering.

6.2.3 Interaction
To better facilitate understanding of the multiple facets of each neuron
cluster, CNNVis provides a set of user interactions.
Interactive clustering result modification. Since the clustering algo-
rithm is not perfect and experts may have different needs, we allow
experts to interactively modify the clustering results based on their
knowledge (R2). Inspired by NodeTrix [24], we allow experts to drag a
neuron out of a neuron cluster or to another neuron cluster.
Selecting particular neurons to view. There are thousands of neurons
in a CNN. Thus, it is necessary to allow experts to view only some
of the neurons. We allow users to select a set of classes and show the
neurons that are strongly activated by the images in these classes. Any
irrelevant neurons are deemphasized by setting them to be translucent.
Switching between Facets. Exploring the multiple facets of neurons
can help experts better understand the roles of neurons. One way to
visualize multiple facets is to overlay one facet on top of another [8, 9].
However, in our scenario, each facet already contains too much
information. Overlaying multiple facets can easily lead to users
becoming overwhelmed. This problem is confirmed by our experts.
They said that they were more interested in analyzing each single facet.
Thus, we decided to allow users to switch between these facets [38]
instead of overlaying multiple facets (R3). For example, users can view
the learned features or the activation matrix.

6.3 Biclustering-based Edge Bundling
Initially, we visualized each edge as a curve. The major concern of the
experts is visual clutter caused by millions of edges between nodes.

In order to reduce visual clutter, we tried the geometry-based edge
bundling method [14, 25, 39] to cluster the edges between two lay-
ers. After interacting with CNNVis, the experts commented that this
bundling method reduces visual clutter to some extent. However, the
clusters revealed by the geometry-based bundling methods did not help
their analysis because the edges with similar weights were not clustered
together. The experts are more interested in edges with larger absolute
weights, because this indicates that the corresponding inputs have a
larger impact on the output.

To fulfill this requirement, we developed a biclustering-based edge
bundling method to bundle edges with both similar and large absolute
weights. For a given layer, a bicluster is a subset of input neuron clus-
ters and a subset of output neuron clusters. This method can logically
aggregate multiple individual connections and thus provides an oppor-
tunity to visually bundle edges between neuron clusters. Our method
was inspired by the biclustering method in BiSet [53]. In BiSet, each
edge is unweighted. While in a CNN, each edge has a weight and we
need to bundle the edges with similar weights. If we simply employ the
biclustering method in BiSet, we may lose some important biclusters
with larger weights and fewer edge numbers. To solve this problem, we
have developed a weighted biclustering method, which consists of the
following steps (Fig. 8).
Step 1: Aggregating Connections between Neurons. We first calculate
the strength wi j of the connection ei j between two neuron clusters, Ci and
C j. We denote E = {ei j} as the edge set. An intuitive approach is to use
the average of all the weights of the edges that connect neurons in Ci and
C j. The problem with this method is that it aggregates positive edges
(edges with positive weights) and negative edges (edges with negative
weights) and may result in an aggregated edge with a small weight. This
may lead to a misunderstanding. Therefore, we calculate the strength
of the connection between two neuron clusters as a two-dimensional
vector ~wi j = [wpos

i j ,wneg
i j ], where wpos

i j is the average of the positive edge
weights and wneg

i j is the average of the negative edge weights.
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Fig. 8. Illustration of biclustering-based edge bundling.

Step 2: Biclustering. Based on the aggregation results, we then detect
biclusters between the input neuron clusters and the output neuron
clusters. Because experts are interested in both larger positive edges and
smaller negative edges, we cannot simply convert it to an unweighted
graph and perform biclustering. Thus, we first seek the maximum
value wmax in W = {wpos

i j }∪{|w
neg
i j |}. If wmax ∈ {wpos

i j }, then we select the
edges satisfying: |wpos

i j −wmax|< τ, where τ is a user-defined parameter
denoting the tolerance of similarity. If wmax ∈ {|wneg

i j |}, we then perform
a similar extraction. For these edges, we then mine the closed item
sets as biclusters, where each input neuron cluster is connected to each
output neuron cluster. To mine the closed item sets, we adopt the widely
used Apriori, an algorithm for frequent item set mining [2]. After that,
we remove the edges in the extracted biclusters from E and then repeat
the process until wmax is under a user-defined threshold.
Step 3: Edge Bundling. In this step, we bundled the edges in the same
bicluster to reduce visual clutter. Inspired by BiSet [53], we also add
an “in-between” layer between the input and output neuron clusters
(Fig. 8 (c)). In this layer, each bicluster is visualized as a rectangle. In
a bicluster, we use two colored regions (green and red) to indicate the
proportion between the number of positive edges and negative edges.
An edge between two neuron clusters consists of two aggregated
curves (A, B in Fig. 8), where green and red visually encode positive
and negative weights, respectively. Since experts are less interested in
analyzing edges with smaller absolute weights, they are not displayed
by default. These edges can be shown by user request.
Interaction. The debugging information can help experts diagnose a
failed training process. In CNNVis, we allow experts to analyze the
debugging information at different granularities (R5). For example, they
can change the color coding of edges to analyze the gradient of each
weight. Experts also have the option to view the average gradient at each
layer as a line chart to get an overview of the debugging information.

7 APPLICATION

In this section, we present the case studies to demonstrate how CNNVis
help experts understand, diagnose and refine a CNN.

7.1 Overview
We have worked closely with the team of experts to select the base
CNN model and to design the case studies.
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Fig. 9. The architecture of BaseCNN. It contains four groups of convolu-
tional layers and two fully connected layers. The number below a layer is
the number of neurons in that layer.

Base CNN. The base CNN was contributed by E3 of the expert team.
For brevity’s sake, we refer to the base CNN as BaseCNN. BaseCNN
was designed based on a widely used deep CNN introduced in [50],
which is often used in image classification. Recently, the expert team
that we collaborate with has been redesigning this CNN and testing
the performance of the variants. BaseCNN consists of 10 convolutional
layers and two fully connected layers. The convolutional layers are
organized into four groups, containing 2, 2, 3, and 3 convolutional
layers, respectively. Each group ends with a max-pooling layer, which

outputs the maximum pixel value of the input region. When designing
BaseCNN, the expert employed a commonly used activation function,
rectified linear unit (ReLU) [45]. ReLU is a piecewise linear function
that prunes the negative part of the input to zero and retains the positive
part. In addition, he chose cross-entropy to measure the difference
between the output of a CNN and a true image label (i.e., the loss).
The architecture of BaseCNN is depicted in Fig. 9.

BaseCNN was trained and tested on a benchmark image dataset,
CIFAR10 [32], which consists of 60,000 labeled color images of size
32×32 in 10 different classes (e.g., airplane, bird, and truck), with 6,000
images per class. The dataset was split into a training set containing
50,000 images and a test set containing 10,000 images. Training and
testing of BaseCNN were performed under a widely used deep learning
framework, Caffe [28]. The BaseCNN model achieved an 11.32% error
rate on the test set.
Design of Case Studies. We have worked closely with the expert team
to design three case studies from their current research on CNNs.

First, based on BaseCNN, the expert team constructed several vari-
ants and aimed to study the influence of the network architecture on
performance. The experts said that such an analysis would help to better
understand why CNNs with different architectures perform differently
(Sec. 7.2).

Second, the expert team required the diagnosis of a training process
that failed to converge. For example, in one training trial, E3 changed
the output activation function and the loss function of BaseCNN. How-
ever, the training failed. The expert team wanted to diagnose the
training process and find potential issues. This scenario triggered the
second case study (Sec. 7.3).

Finally, the expert team wanted to further improve the model ac-
curacy of the BaseCNN model. To this end, the expert team decided
to examine the output of each layer from a global overview to local
details and detected a potential direction to improve the model. This
requirement is addressed in the third case study.

Due to the page limit, we have focused on the first two case studies.
Interested readers may refer to the attached video and supplemental
material for the study on model refinement (third case study).

7.2 Case Study: Influence of Network Architecture
This case study was a collaboration with expert E2. E2 is focused on
combining CNNs with deep generative models. In this case study,
E2 evaluated the effectiveness of CNNVis on a set of variants of
BaseCNN (with different depths and widths) qualitatively based on
his experience. He also checked the possibility of selecting a CNN
with a suitable architecture under the guide of CNNVis. Though a
number of high-performance models can be referred to in benchmark
datasets, it usually takes a long time to transfer the experience to other
scenarios (e.g., choose a suitable CNN on a new dataset). Therefore,
E2 emphasized that a systematic study of the network architecture and
its influence on performance will help them decide on an appropriate
network architecture in their research.
Overview of BaseCNN. We first provided expert E2 with an overview
of BaseCNN (Fig. 1) to evaluate the quality of CNNVis.

From the overview, he identified that the neurons in the lower layers
learned to detect low-level features such as corners, color patches,
and stripes (Fig. 1A). A similar observation was reported in previous
work [33]. Switching between the top-5 image patches that highly
activate a given neuron in lower layers (Fig. 1D), he noticed that the
retrieved patches did not show much difference in appearance. Then
he turned to higher layers. After exploring the top-5 image patches
for a given neuron in higher layers (Fig. 1E), he noticed that these
neurons could learn to detect high-level features (e.g., an automobile).
He concluded that, “The ability to detect more abstract features in
the higher layers is a nice property of well-trained deep CNNs and
CNNVis indeed shows this pattern well.”

To evaluate the ability of CNNVis to illustrate the finer details of
CNNs, E2 selected two similar classes (automobiles and trucks) and
then examined the activation patterns of the relevant neurons. From
the learned features in the lower layers, he found some commonalities
between trucks and automobiles, such as wheels (A1, A2 in Fig. 10(a)).



He indicated that these features are not sufficient to distinguish the two
classes. Thus, he expanded the 4-th group of convolutional layers for
further examination (Fig. 10(b)). Expert E2 noticed that the number
of “impure” neuron clusters (B1-B3 in Fig. 10(b)) gradually decreased
as he moved to the higher layers. Here, an “impure” neuron cluster
means that the image patches that maximally activate the neurons in
the cluster are from different classes. Examining the “purity” means
that we check the ability of a CNN to distinguish different images from
different classes. In a pure cluster, the image patches that have the same
class label are gathered together in the activation space generated by
the outputs of the layer. In the lower layers, we prefer “impure” clusters
because we want the neurons to detect as many different kinds of
features as possible. While in higher layers, we prefer “pure” clusters
because we want the model to separate different classes by a large
margin, so that the image patches from different classes seldom exist
in the same cluster. The expert commented that this criterion would
apply to other CNNs as well. We illustrate this criterion in Fig. 11. For
example, in the top convolutional layer of BaseCNN, all clusters look
“pure,” which indicates that the output activations of the images given
by BaseCNN match well with their corresponding classes.
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Fig. 10. Learned features of BaseCNN: (a) low-level feature; (b) high-
level features.
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Fig. 11. Illustration of an “impure” cluster and a “pure” cluster.

Network Depth. E2 further investigated how the depth of the network
affects the features detected by the neurons. He compared BaseCNN
with two variant models, including ShallowCNN, which cuts off the
4-th group of convolutional layers, and DeepCNN, which doubles the
number of convolutional layers. The architectures and accuracies are
summarized in Table 1.

Table 1. Performance comparison between CNNs with different depth.
“#ConvLayers” is the number of convolutional layers and “#Layers” is the
number of layers that can be visualized.

Error #ConvLayers #Layers
ShallowCNN 11.94% 7 30

BaseCNN 11.33% 10 40
DeepCNN 14.77% 20 70

He also selected the truck and automobile classes, and expanded
the last group of convolutional layers (Fig. 12(a)). In ShallowCNN,
he identified that there were indeed a lot more “impure” clusters in
the top convolutional layers compared to those in BaseCNN, which
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Fig. 12. Influence of the model depth: (a) high-level features of a shallow
CNN; (b) A layer whose weights are almost positive in DeepCNN.
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Fig. 13. Consecutive convolutional layers whose weights are almost
positive in DeepCNN.

indicates that a model without a sufficiently large depth is often
incapable of distinguishing images from similar classes, which can
lead to a decrease in performance. In DeepCNN, expert E2 noticed
that almost all the edges in the first convolutional layer in the 4-th
group were green (A in Fig. 12(b)). This indicated that almost all the
weights in that layer were positive. The expert commented that since
the inputs of that layer were non-negative, the outputs were mostly
positive. The outputs were then fed into ReLU. Because ReLU retains
the positive part of the input, the ReLU, together with its corresponding
convolutional layer, can be viewed as a close-to-linear function. By
further expanding the 4-th group of convolutional layers, expert E2
identified several consecutive layers that had similar patterns (Fig. 13).
Because the composition of linear functions is still linear, he concluded
that this phenomenon indicates redundancy in the layers. He also
commented that such redundancy may hurt overall performance and
make the learning process computationally expensive and statistically
ineffective. These findings are consistent with previous research [54].
E2 then concluded that CNNVis could be used to check the abstractness
of the features extracted by CNNs.
Network Width. Another important factor that influences performance
is the width of a CNN. To have a comprehensive understanding of its
influence, E2 evaluated several variants of BaseCNN with different
widths, named by BaseCNN×w, where w denotes the ratio of the num-
ber of neurons in a layer compared to that of BaseCNN. For example,
BaseCNN×4 contains four times the neurons of BaseCNN. In the case
study, w is selected from {4,2,0.5,0.25}. The architecture and perfor-
mance of these variants as well as BaseCNN are listed in Table 2.

Compared to BaseCNN, a wider network (BaseCNN×4) has a much
lower training loss than testing loss. The expert commented that this
phenomenon is known as overfitting in the field of machine learning. It
means that the network tries to model every minor variation in the input,



Table 2. Performance comparison between CNNs with different widths.
#Params is the number of parameters in the model, which is measured
in millions.

Error #Params Training loss Testing loss
BaseCNN×4 12.33% 4.22M 0.04 0.51
BaseCNN×2 11.47% 2.11M 0.07 0.43

BaseCNN 11.33% 1.05M 0.16 0.40
BaseCNN×0.5 12.61% 0.53M 0.34 0.40
BaseCNN×0.25 17.39% 0.26M 0.65 0.53
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Fig. 14. Comparison between models with different widths: (a) low-
level features of BaseCNN×4; (b) low-level features of BaseCNN; (c)
high-level features of BaseCNN×0.25

which is more likely to be noise. It often occurs when we have too many
parameters relative to the number of training samples. When a model
overfits, its performance on the testing set will be much worse than that
on the training set. E2 wanted to examine the influence of overfitting on
CNNs. He visualized BaseCNN×4 with our visual analytics system.

After examining high-level features, the expert did not find much
difference compared to BaseCNN. Then he switched to examine low-
level features. He instantly found that the same image was shown in
multiple neurons (A, B in Fig. 14(a). It indicated that these neurons
learn to detect almost the same features. The expert inferred that
there may be redundant neurons in an overfitting CNN. For further
verification, he decided to examine the activations of the neurons in
this cluster. Compared to the activations in lower layers of BaseCNN
(Fig. 14(b)), he found that many neurons have very similar activations
(C in Fig. 14(a)). This observation verified that there are redundant
neurons in the lower layers of a CNN that is too wide.

E2 commented, “We often use a quantitative criterion (e.g., accuracy)
to evaluate the quality of a model. However, a quantitative criterion
itself cannot provide sufficient intuition and clear guidelines. Even
when I know a CNN overfits, it is hard to decide which layer to narrow
down or remove. CNNVis can guide me in locating the candidate layers,
which is very useful in my research.”

E2 then compared the performance of BaseCNN with narrower net-
works (BaseCNN×0.5 and BaseCNN×0.25). Although the training
loss and testing loss of these narrower networks are comparable, which
indicate that these narrow networks generalize well, their performance
was worse than BaseCNN (Table 2). The expert explained that this
phenomenon is known as underfitting. It happens when the task is
complex but we are trying to use a simple model to perform the task.
In image classification, one of the major disadvantage of underfitting is
that the model is too simple to distinguish images from similar classes
(e.g., automobiles and trucks). In addition to the decrease in accuracy,
he wanted to know the influence that underfitting brought to the model.

The expert visualized BaseCNN×0.25 for further exploration. He se-
lected two similar classes, automobile and truck, to examine the patterns
of relevant neurons. After analyzing low-level features, he did not find
much difference compared to BaseCNN. Thus, he switched his attention
to high-level features. When examining the features of the last convolu-
tional layer, he found that there were several “impure” neuron clusters.
For example, cluster D in Fig. 14(c) is represented by three trucks
and an automobile (outlier). He switched to explore the activations in
this cluster (E in Fig. 14(c)). The expert found the outlier has similar
activations on the two classes (i.e., truck and automobile), which means
that this neuron does not distinguish automobiles from trucks. As a
result, the ability of the model to correctly classify images from similar
classes is hindered, which is reflected in the decrease in accuracy.

Expert E2 commented, “It is really hard for me to choose the architec-
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ture, including the depth and width of the network on a new dataset, as
there are not many high-quality deep models to refer to. I usually need
to try a series of parameters to achieve a satisfactory performance. CN-
NVis can intuitively show the quality of the model in various ways, such
as the purity of clusters, and help transfer knowledge from previous
experience and enable me find the suitable architecture more quickly.”

7.3 Case Study: Training Diagnosis

This case study demonstrates how CNNVis helps an expert (E3) diag-
nose a failed training process. E3 is a deep learning researcher who
focuses on integrating concept learning with deep learning. Recently,
during the research triggered by [36], E3 tried to construct a variant of
BaseCNN. Specifically, he replaced the loss function with hinge loss,
which measures the difference between the score of the correct class
and the score of the predicted class. However, the training of this model
failed. The problem was that the training process got stuck when the
loss decreased to around 2.0, where the model was far from achieving
good accuracy.

To help the expert diagnose the failed training process, we provided
him with the visualization of a snapshot after the training process
got stuck. Because he often used the relative changes of weights to
diagnose a training process in his previous research, he set the initial
color coding of edges as the relative changes of weights.

Based on the overview, expert E3 observed that the edges were
difficult to recognize after the top-2 layers (Fig. 15(a)). This indicated
that the relative changes of weights were very small. He then used the
line chart (A in Fig. 15(a)) to check the average relative changes in
weights. He found that the average relative changes decreased a great
deal after the top-2 layers (B in Fig. 15(a)), which caused the training
process to become stuck. E3 was curious about what led to such small
relative changes in weights, so he used the color of edges to represent
the weights. He immediately identified that an overwhelming majority
of edges were negative (Fig. 15(b)).

He wanted to find what influence the negative weights had on the
model. As the learned features could not reveal much information
due to the failed training process, expert E3 switched to examining the
activation matrices. He found some activation matrices were essentially
blank. This indicated that some neurons had zero activations on all



classes. To further study this phenomenon, he sequentially expanded
the second, third, and fourth groups of convolutional layers. He found
that the ratio of neurons with zero activations became larger and larger
from the lower layers to the higher layers (A1-A5 in Fig. 16). The
activation functions of these neurons were ReLUs. He continued to
zoom in and further examine the inputs fed into the ReLUs, which he
found were always negative. Thus, if the input of a ReLU is less than
zero, it generates a zero activation.

Expert E3 explained that because the input of each convolutional
layer was the output of the ReLUs in the previous layer, it must be
nonnegative. As the weights of the linear transformation in this layer
were mostly negative, the values fed into ReLUs were mostly negative.
Consequently, the outputs of ReLUs were mostly zeros. In the training
method that we used (i.e., stochastic gradient descent [7]), zero outputs
of a neuron mean zero updates to its weights.

Having learned why the training process got stuck, expert E3 pro-
posed a method to force the network away from that situation. He
added a batch-normalization layer [27] after each convolutional and
fully connected layer, and before the ReLU activation function. A
batch-normalization layer can normalize the output of its correspond-
ing convolutional or fully connected layer through linear operations.
With batch-normalization, the input fed into the ReLUs should no
longer be mostly negative. This means that the model can still be
trained even when most weights are negative.

The improved model achieved an error rate of 9.43% on the CIFAR-
10 dataset, with which expert E3 was very satisfied. He commented, “I
have investigated this problem for a long time and inserted all kinds
of code fragments to print the debugging information during training.
However, after many unsuccessful attempts and a great deal of effort
spent reading the debugging information, I eventually gave up. It is
awesome to have a tool like CNNVis, which intuitively illustrates the
training statistics and allows me to explore the training process from
multiple perspectives.” The expert also expressed that he would try
batch-normalization when using hinge loss in his future research. This
is one important lesson he has learned.

8 DISCUSSION

Lessons Learned. We have learned two lessons in the process of
collaborating with the machine learning experts.

First, sometimes experts may not clearly know what they exactly
want to investigate before they use the prototype. For example, in one
discussion, the experts required that the edges need to be clustered
to reduce visual clutter (Sec. 6.3), but had no idea how the edges
should be clustered. In order to explore the experts’ requirements, we
first tried traditional geometry-based edge bundling methods. After
seeing the new prototype, they instantly realized that this was not what
they wanted and expressed a need for clustering edges with similar
weights together. Accordingly, this requires us to quickly develop new
prototypes based on the expert feedback.

Second, using the data that experts are interested in is crucial
for gaining insight. For example, in our development process, we
first adopted relatively simple data to accelerate the implementation.
In particular, we used a handwritten digit dataset (MNIST [35])
and a traditional network (LeNet [35]), which only contains two
convolutional layers. Using simple data can help us more easily
verify the correctness of the system and more effectively introduce
the basic idea to the experts. However, after sticking to this data for
a long time, we gained little useful insight for diagnosis and model
refinement because this data was too simple for these tasks. As a result,
we decided to switch to a more complex dataset (CIFAR10) and a real
network the experts were working on (BaseCNN), which indeed raised
several issues in their research and development process. The switch
helped us to gain much more useful insights (Secs. 7.2 and 7.3).
Limitations. Our case studies demonstrate the effectiveness of CN-
NVis. Nevertheless, there are still several limitations of CNNVis.

First, CNNVis cannot visualize deep models that cannot be
formulated as DAGs because we adopted a DAG layout to calculate the
positions of neurons. Recurrent neural networks (RNNs) [34] are one
example. In a RNN, connections between neurons form a directed cy-

cle, and thus a RNN cannot be formulated as a DAG. This problem can
be potentially solved by unfolding a RNN into a very deep DAG [34].
However, the depth may cause additional computational costs.

Second, the scalability of the activation matrix is limited. When the
number of classes is large (e.g., >100), an activation matrix will have
too many columns. It will be difficult to examine the activation of a
neuron on each class. Since experts may use a very large dataset with
hundreds or thousands of classes, improving the scalability of the acti-
vation matrix is desirable. For example, the ImageNet dataset [33] con-
tains more than 1,000 classes. This problem can be solved by clustering
similar classes and aggregating the activations in the same class cluster.

Third, there is a learning curve associated with the system. It took
the experts about one or two hours to become fully familiar with the
visual encodings and interactions of CNNVis. The visual design of the
neuron cluster seems to be the most confusing part for some of them.
Initially, two experts thought a large rectangle (e.g., D in Fig. 14) was a
neuron instead of a neuron cluster. After communicating with them, we
found that this misunderstanding was caused by aggregating the edges
connecting two neuron clusters into one edge. It made them mistake a
neuron cluster for a neuron, and further mistake the representative neu-
rons shown in a cluster for the learned features of a single neuron. The
experts suggested that we provide a more intuitive visual design for the
neuron cluster. This will shorten the time of getting familiar with the
system. Furthermore, it will enable them to adopt CNNVis as an edu-
cational tool to illustrate the working mechanism of a CNN for average
users or researchers from other fields. Possible solutions are to employ
the range traversal technique [16] or provide additional visual hint(s).

9 CONCLUSION

In this paper, we have presented a novel visual analytics system to help
machine learning experts better understand, diagnose, and refine CNNs.
Powered by a hybrid visualization consisting of rectangle packing,
matrix ordering, and biclustering-based edge bundling, the system
allows experts to explore and understand a deep CNN from different
perspectives. In addition, it enables experts to diagnose and refine the
CNN architecture to further improve performance. Three case studies
were conducted to demonstrate the effectiveness and usefulness of the
system for comprehensive analysis of CNNs.

There are several directions for future work to further improve our
system. Currently, CNNVis focuses on analyzing a snapshot of a CNN
model in the training process, which is useful for conducting offline
analysis. All the experts expressed the need to integrate CNNVis
with the online training process and continuously get an update of the
training status. A key issue is the difficulty of selecting representative
snapshots and comparing them effectively.

Another interesting venue for future work is to apply CNNVis to
other types of deep models that cannot be formulated as a DAG, such
as a recurrent neural network (RNN). The major bottleneck is to design
an effective visualization to facilitate experts in understanding the data
flow through different types of deep models. For example, in addition to
the conventional multi-layer neural network, RNN has a feedback loop
from an output to an input. Better understanding of the working prin-
ciple of the feedback loop helps experts design more effective models.
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