
Interactive Visual Analysis of the NSF Funding Information
Shixia Liu∗

IBM China Research Lab
Nan Cao†

IBM China Research Lab
Hao Lv‡

Shanghai Jiaotong University
IBM China Research Lab

ABSTRACT

This paper presents an interactive visualization toolkit for navigat-
ing and analyzing the National Science Foundation (NSF) funding
information. Our design builds upon the treemap layout and the
stacked graph to contribute customized techniques for visually nav-
igating and interacting with the hierarchical data of NSF programs
and proposals, supporting visual search and analysis, and allowing
the user to make informed decision.

In this visualization toolkit, we propose two visualization tech-
niques to simplify the navigation of the hierarchical data: 2.5 Di-
mensional treemaps to make the hierarchical structure more easily
to be recognized, and labeled treemap to help the user to get a clear
overview of the content of the structure and make the internal area
of rectangles correspond to the weights of the data set. Further-
more, an incremental layout method is adopted to handle informa-
tion on a large scale. The improved treemap visualization will help
to visually analyze the static funding data and the stacked graph is
utilized to analyze the time-series data. Through these visual anal-
ysis techniques, research trends of NSF, popular NSF programs are
quickly identified. The primary contribution is a demonstration of
novel ways to effectively present and analyze NSF funding data.

Keywords: Interactive visualization, Treemaps, Time series data
visualization, Overview+detail, Cascaded rectangles.

1 INTRODUCTION

The NSF funds research and education in science and engineering.
Each year, NSF receives approximately 30,000 new or renewal sup-
port proposals for research, graduate and postdoctoral fellowships,
and math/science/engineering education projects; it makes approx-
imately 9,000 new awards. As the amount of information on the
NSF website increases continually, decision-makers are often over-
whelmed, something must be done to allow decision-makers to eas-
ily extract the information it contains. Information visualization is
a powerful tool to help find the relations and trends of the data. Ap-
plying visualization technology to the website can aid for allowing
the decision-maker to find the important information more easily.

One interesting approach to presenting large volumes of data in a
user-friendly manner is treemap visualization. The treemap visual-
ization method, developed by Johnson and Shneiderman [1], maps
hierarchical information to a set of nested rectangles whose areas
correspond to some quantity (weight) in the data set. Treemaps are
efficient and compact displays, they are very effective in visualizing
large hierarchical collections of quantitative data in a single view
and showing attributes of leaf nodes using size and color coding.
More work has been done on treemap visualization [2]. Treemaps
are originally designed for visualizing a filled hard disk, now they
have been successfully applied to a wide range of applications in-
cluding financial analysis [3, 4], sports data analysis [5, 6], decision

∗e-mail:liusx@cn.ibm.com
†e-mail:nancao@cn.ibm.com
‡e-mail:hlv@acm.org

Figure 1: NSF organization structure

making [7], software analysis [8, 9], etc.
Another interesting approach is the stacked graph which is

adopted by Martin Wattenberg in his NameVoyager [10]. This
method is very effective for visual exploration of thousands of time
series.

In this paper, we present the design of the visual funding naviga-
tor, a visualization system for exploring and analyzing online NSF
funding related data. This work extends our previous work [11]
by designing more visualization methods and visual analysis meth-
ods for the visual funding navigator. This funding navigator builds
on the treemap layout and the stacked graph to help the user visu-
ally observe and analyze the NSF funding data. The major feature
of this navigator is that it provides an integrated support for static
analysis and dynamic analysis. Treemap layout is adopted to ana-
lyze the static funding data. This analysis will help the user quickly
discover the influential research organizations and projects in a par-
ticular topic area. Staked graph is utilized to dynamically analyze
the time-series data embedded in the funding information, i.e., the
distribution of grant amount of each NSF program over time. Such
kind of dynamic analysis will help the user track the NSF program
trends, thus help the user easily find the focused topic of interest.

The rest of the paper is organized as follows. Section 2 briefly
introduces the corpus data. The visualization design and implemen-
tation techniques are presented in Section 3. Section 4 illustrates the
visual analysis method and corresponding results. Conclusion and
future work are presented in Section 5.

2 ANALYSIS OF CORPUS DATA

The visual funding navigator is based on a data set, derived from
the NSF official website that tracks the NSF call for proposals and
proposals in the United States. The NSF programs and the corre-
sponding request for proposals, and NSF awards are organized by
the NSF organization structure (see Figure 1), such as directorate,
division, program.

In order to use the treemap layout to visualize the NSF programs
and awards, a tree structure for organizing them is necessary. A
natural way to organize them is by the NSF organization structure.
Another way to organize them is by the locations where the inves-
tigators are located, such as state, research organization. In our
toolkit, we will utilize both of these two tree structures to generate
the treemap views to help the user understand the funding related
data more easily and quickly.

Each NSF award has a start date, an estimated expired date, and
awarded amount. From such kind of information, we could extract
the grant amount with time in each NSF program. These time series
are the input of stacked graphs. We will illustrate the construction
of stacked graphs in Section 4.2 in detail.

183

IEEE Pacific Visualisation Symposium 2008
4 - 7 March, Kyoto, Japan
978-1-4244-1966-1/08/$25.00 ©2008 IEEE

Figure 2: Treemap of a balanced tree.

3 VISUALIZATION DESIGN AND IMPLEMENTATION

Our visualization design builds mainly upon the treemap layout and
the stacked graph. Based on these visualization techniques, we con-
tribute customized techniques for visually navigating and interact-
ing with NSF Funding data, supporting visual analysis, and allow-
ing the user to make informed decision.

3.1 Treemap Layout Improvements
Treemap enables users to compare nodes and sub-trees even at
varying depth in the tree, and help them spot patterns and excep-
tions. However, treemaps have limitations [12]. One problem is
that treemaps often fall short to visualize the structure of the tree.
Thus it’s not easy to discern the entire structure of the hierarchi-
cal data in the traditional treemaps, especially when the number of
nodes comes up to thousands and the hierarchy structure is very
deep (usually, when the maximum depth of the hierarchy is greater
than 3). In such cases, treemap could only come to help to view
the distribution of leaves with hierarchical structure sacrificed. The
worst case is a balanced tree, where each parent has the same num-
ber of children and each leaf has the same size. The treemap de-
generates here into a regular grid. Wijk et al. [13] showed such an
example in their work about cushion treemaps (see Figure 2). This
example is about an (artificial) organization chart which is modeled
after the structure of their university. Six levels in the hierarchy
are shown, the final 3060 rectangles denote individual employees.
In this example, question such as ”What is the largest section?”,
”Which division does a specific employee belong to?” are hard to
answer by just from such a treemap view. Figure 3 is another exam-
ple. In this figure, the root node of the tree is named “Tree”. And
it has four child nodes named “1”, “2”, “3” and “4”, each of which
has its own child nodes. The child nodes are named following the
index convention of book sections. The names of the leaves are ig-
nored in the figure. It could be seen that the route <4.5.5, 4.5, 4,
Tree> is far less than obvious.

Since the structure of a tree is very useful for gaining an overview
of the hierarchical data, it is therefore important to design a new
representation of the treemap. Some initial efforts have been tried
to get a clear perception of the structure. Nested treemaps [1] are
a partial remedy. During the subdivision process instead of the ini-
tial rectangle a slightly smaller rectangle is used, such that each
group of siblings is enclosed by a margin. However, this con-
sumes screen space and needs the visual interpretation, especially
for deeply nested trees, still requires effort from the viewer (see
Figure 3). Cushion treemaps [13] employ the shading effects to im-

Figure 3: Labeled Treemaps.

Figure 4: Representation of child-parent relations.

prove the perception of tree structure by feigning specular reflec-
tion and thereby simulating a curved surface. This method is also
adapted for the enhancement of nested treemaps to framed treemaps
[14], resulting in quasi-three-dimensional borders. Steptree [15]
is a three dimensional extension of Shneiderman’s spacing filling
treemap concept [16], it shows depth in tree as the heights of steps.

All these methods may reduce, but do not prevent, misinterpre-
tations concerning the hierarchy. It is still not easy for the viewers
to understand the whole picture when the hierarchy is complicated.

In this section, we describe a new method for visualizing the
hierarchical funding related data based on treemaps. The major
improvement of this method is that it uses node cascading technique
and labels to show the tree structure.

3.1.1 2.5D Treemap

In this section, we propose a new approach, 2.5D treemaps, to tree
visualization. The 2.5D treemaps aim at highlighting the child-
parent relations of the hierarchy without losing the ability of vi-
sualizing large data set within constrained space. The intuition is to
make the depth of the tree an additional dimension. In this method,
we take advantage of a “2.5-Dimensional” representation in which
a “height” coordinate is represented by an offset factor. Figure 4 is
an illustration of this basic idea.

Figure 5 is a 2.5D treemap for the same hierarchical data of Fig-
ure 3. It can be seen that the hierarchy becomes apparent. The
viewer can easily tell where a node lies in the hierarchy.

Given a nested treemap, the conversion is done recursively as
follows.

1. The leaf rectangles are unchanged.

2. For a non-leaf rectangle with all its child rectangles converted,
move its bottom right corner up and left to make it as small as
possible while still covering all the center points of its child
rectangles. See Figure 6 for an illustration.

184

Figure 5: 2.5D labeled treemaps.

Figure 6: Convert nested treemaps to 2.5D treemaps.

In the conversion, since the top left corners of rectangles are
fixed, the cascading offset is determined by the top and left padding
spaces. In 2.5D treemaps, each rectangle must intersect with its
parent (except the root) and may only intersect with its ancestors
and descendants.

3.1.2 Improved Labeled Treemap layout

A Labeled treemap is another extension of the nested treemap. It
extends the nested treemap in that rectangles corresponding to non-
leaf nodes contain additional space for their names and borders.
Labels on the non-leaf nodes make it efficient for viewers to iden-
tify the categories and find data that they are interested in. How-
ever, the labels and borders occupy space which is originally owned
by the weight of the data set, original layout methods fail in mak-
ing the areas of rectangles correspond to the weights of the data
set. Images produced by these methods are difficult for recognition.
Furthermore, these methods may make some nodes correspond to
meaningless rectangles whose heights or widths are less than zero,
which makes these nodes disappeared from the screen. Thus, a new
method is needed to improve such case.

In this section, we propose a new method for constructing a
treemap with labels. The goal of this method is to make the ar-
eas of leaves well approximate their weights and avoid the case of
meaningless rectangles.

We first introduce some preliminary definitions which are useful
for subsequent discussions.

Definition 3.1 The density of a leaf rectangle is the amount of
weight on one unit of area.

Intuitively, we can impose requirement on the least amount of area
for one unit of weight to ensure every item is visible. We present
this intuition with the help of the definition below.

Definition 3.2 A nested treemap is fit on density ρ if every unit of
the weights of the leaf rectangles occupies area at least 1

ρ .

The following two facts about the fitness on density are obvious.
The second fact is a corollary of the first fact.

Fact 3.1 Given a hierarchy, if there is no nested treemap that is fit
on ρ , then for every ρ ′ < ρ , there is no nested treemap that is fit on
ρ ′.

Fact 3.2 Given a hierarchy, if there is a nested treemap that is fit
on ρ , then for every ρ ′ > ρ , there is a nested treemap that is fit on
ρ ′.

In our algorithm, we generate the “good” nested treemaps. Among
these generated treemaps, we calculate the approximate value of ρ ,
and then try to find one of these treemaps which is fit on ρ . We
organize our algorithm into two parts. The first or outer part is to
use binary search to find the most fit density ρ . The second or inner
part is to answer whether a certain ρ is fit on a given rectangle R.

The first part is trivial and easy to implement. We focus on the
second part of our algorithm. The process of the second part is
done recursively. Given ρ and a set of nodes and a rectangle R, the
algorithm to answer whether ρ can be fit is described Calc(A,R)
as follows. We use R◦ to represent the interior of the R.

1. If A contains only one non-leaf item u, then map u to R and
return Calc(B,R◦), where B is the set of sub items of u;

2. If A contains only one leaf item u then calculate average
weight per unit of area represents. If it is smaller than ρ , then
map u to R and return true, otherwise return false;

3. Sort and split A into two parts A1 and A2 with approximately
equal weights;

4. Try all possible splits on the longer edge of R to split it into
two sub rectangles R1 and R2.

(a) Call Calc(A1,R1) and Calc(A2,R2) recursively;

(b) If both returns true, then return true;

5. return false;

Steps 3 and 4 show our definition of “good”, since they could
generate all “good” nested treemaps. They split the interior of the
rectangle on its longer edge into two sub rectangles, and then gen-
erate nested treemaps recursively on two subsets of siblings with
approximately equal weights. It is much like the layout process of
a squarified treemap [14].

Next, we evaluate the improvements of the new algorithm. The
algorithm used in squarified treemaps [14] is selected to be com-
pared with our algorithm. Both of the two algorithms will be ap-
plied to the same collections of data and with the same padding
setting. The comparison is made on several factors of the resulting
layouts. The factors are described as follows. The “total” factor
represents the total number of leaf items. The “missing” factor rep-
resents the number of the leaf items that are being missed. The
“di f f ” factor of two rectangles represents the difference between
the density of them. It is calculated by the formula below, where wi
is the weight of the i-th leaf rectangle and ai is the area of the i-th
leaf rectangle.

di f f(i, j) =
∣∣∣ai×w j−a j×wi

ai×w j +a j×wi

∣∣∣

185

Figure 7: Visualization of the currently active awards on NSF website (31159 awards).

The “ratio” factor of a rectangle represents the aspect ratio of
a rectangle. It is calculated by dividing the length of the longer
edge by the length of the other. The value of this factor is at least
1. The “dens” factor of a rectangle represents the density, which is
the amount of weight on one unit of area. The “dens” factor of a
treemap is the average density over all the leaf rectangles. The two
factors are calculated by the formula below, where wi is the weight
of the i-th leaf rectangle and ai is the area of the i-th leaf rectangle.

densi =
wi

ai
, dens = ∑wi

∑ai

In the following tables, “E” is used to calculate the expectation
and “D” is used to calculate the deviation. “DISPLAY” represents
the size of display rectangle. “METHOD” represents which lay-
out algorithm is used: “ours” is our algorithm and “squari” is the
squarified treemap algorithm.

Table 1 is the layout result of some of the awards which are
funded since Jan 1, 2005. They are generated with different pixel
displays. Table 2 is the layout result of different ranges of data with
a 1400×1050 pixel display. They are the awards funded since Jan
1, 2005 with 9373 leaves, the awards funded since Jan 1, 2004 with
16874 leaves, and all the active awards in NSF website with 31159
leaves.

From the results, we can see several facts. First, the results of the
squarified layout algorithm have many missing items when the dis-
play area is not big enough, while the new algorithm does not miss
any item. Second, by using the new algorithm, the average differ-
ence of densities between two leaf rectangles are much smaller and
the densities of the leaf rectangles are much more uniformly dis-
tributed, which implicates that the sizes of the leaf rectangles well

total 3602
DISPLAY 1024×768 1280×1024
METHOD ours squari ours squari
missing 0 320 0 63
E(di f f) 0.0462 0.182 0.0238 0.110
E(ratio) 1.70 2.41 1.75 2.33
D(ratio) 0.00964 0.885 0.0659 0.816
E(dens) 2.91 19.3 0.375 3.62
D(dens) 1.72 256 0.237 103
E(dens)

dens
1.25 13.9 1.13 12.1

Table 1: Some of the awards funded since Jan 1, 2005

correspond to their weights. Third, the aspect ratio generated by the
new algorithm is even better and more stable. We conclude that the
new algorithm improves the case a lot and is really necessary.

3.1.3 Visualization of Huge Data Set

Though the layout results are satisfactory, the improved layout al-
gorithm described above is not efficient enough to be applied to
huge data sets. Furthermore, if there are too many leaf nodes on the
screen, then the area assigned to each leaf node is small. Especially
for the leaf nodes with small weights, the allocated areas are much
smaller than other nodes, therefore it may be a bit hard to select (or
even see) these leaf nodes (see Figure 7).

To solve this problem, we designed an incremental layout
method, in which a simple level-of-detail calculation is adopted to
handle information on a large scale. The basic idea of this method

186

DISPLAY 1400×1050
total 9373 16874 31159
METHOD ours squari ours squari ours squari
missing 0 332 0 443 0 989
E(di f f) 0.0251 0.121 0.0215 0.124 0.0179 0.119
E(ratio) 1.68 2.39 1.62 2.02 1.64 2.12
D(ratio) 1.17 15.8 0.010 0.364 0.264 6.12
E(dens) 1.16 1.54 2.10 2.96 4.19 5.17
D(dens) 0.724 7.63 1.14 24.5 2.22 21.4
E(dens)

dens
1.19 1.95 1.15 1.98 1.18 1.82

Table 2: Different ranges of data with a 1400×1050 display.

Figure 8: User interface of the visual funding navigator.

is that it will filter out low level nodes when the areas assigned to
the low level nodes are too small and treat their direct parent nodes
as leaf nodes. Then the treemap layout method described in Section
3.1 is utilized to map the filtered tree to the treemap first. Here, the
weight of the parent node is the aggregation of the weights of its
children. When the user clicks on the node in this map, it will then
smoothly zoom in to the selected node area, and the pseudo leaf
node area are split again according to the weights of its children.
This process will be repeated if the current leaf nodes still have
children. Figure 8 is the layout result of the same tree (the level
of this tree is 5) in Figure 7 with fourth-level and fifth-level nodes
filtered. Compared with Figure 7, the nodes in Figure 8 are more
easily to be recognized and the initial layout requires less time.

Furthermore, even adopting the above method, there might still
exist relatively small areas which are a little bit hard to be recog-
nized and selected after the zooming operation, therefore another
level-of-detail calculation is performed so that the leaf nodes whose
areas are greater than the given threshold are rendered to the screen
and the sibling leaf nodes whose areas are less than this threshold
are combined together as a group leaf node. When the area of the
group node is enlarged by the zooming operation, the enlarged area
of this group node is then split again according to the weights of its
sub-nodes.

3.2 Navigation and Interaction

For effective information acquiring and understanding, navigation
and user interaction are as important as presentation. We have
embedded our visual presentation in an interactive system for the
analysis of the funding related information. In this section, we de-
scribe the navigation and interaction techniques adopted by the vi-

Figure 9: An overview of popularity view.

sual funding navigator.

3.2.1 User Interface
The visual funding navigator contains two major parts: visual anal-
ysis part and information part. These two parts work together to
help a user navigate and analyze the NSF funding related data. Fig-
ure 8 is an overview of the UI. The left part is for visual analysis,
and the right part is for displaying information.

The goal of the visual analysis part is to help the user visually
observe and understand the information for quick information find-
ing and decision making. To achieve this goal, the following views
are utilized: treemap view, popularity view, and ProgramVoyager
view. The first two views focus on analyzing the static data, i.e.,
non-time-series data, and the last view is responsible for analyzing
the time-series data.

In treemap view, we organize the NSF funding related data as the
tree structures mentioned in Section 2. Hence, we can easily get an
overview of the NSF funding data being displayed (see Figure 7).

The visual funding navigator enables users to get the top N pop-
ular research organizations which receive more grants than other
organizations. By selecting a directorate, division, or program in
the treemap view or ProgramVoyager view, the top N list in that
unit is shown in the popularity view (see Figure 9).

ProgramVoyager view focuses on tracking program trends by
utilizing stacked graph [10] to visualize the time-series data. Figure
10 is the visualization of the distribution of funding amount of each
active program over time.

Furthermore, in order to help the user navigate and understand
the NSF funding related data more easily, a information part is syn-
chronized with the visual analysis part. This part displays search
results or additional textual information in response to the explo-
ration operations in the visual analysis part. It contains the follow-
ing views:

• Attribute view: this views displays all the attributes of a se-
lected item in the visual analysis part;

• Bookmark: in this view, the user can manage bookmark items
and folders;

• Organization view: this view is used to display the re-
search organizations and their corresponding projects which
are granted by NSF;

• Search result: search result list is displayed in this view;

187

Figure 10: An overview of ProgramVoyager view.

Figure 11: synchronization of multi views.

• Visit history: this view is utilized to display the top N visited
awards.

• Treemap configuration: the user can customize the configura-
tions, such as treemap color, search color, background color,
etc, for the treemap view.

One major feature of this interface is that it enables coordinated
visualization. The multiple views provided by these two parts work
together seamlessly to help the user well understand and analyze
the funding related data. Each view displays some certain aspects
of data about just the object items in that view. When the user
clicks on an object in one view to highlight it, other views will
automatically highlight any related objects. For example, when the
user clicks on an item, such as an award, in the visual analysis part,
then the views in the information part will update automatically:
the corresponding attribute items are displayed in the attribute view;
while the visit history view will update the visiting information.

3.2.2 Search and Filter
The visual funding navigator includes an integrated support for
search and filter. It supports keyword search of the funding related
data. As the items become visible, their profile attributes are added
to a in-memory search index. A search box allows users to type in
search queries. The search results are color-coded by their rank-
ing scores, highlighting the highly matched results (see Figure 13).

Figure 12: NSF awards of California.

Figure 13: Search function of the visual funding navigator.

The user can also select a project to see the detail information of
this project. Furthermore, the user can find the related projects of
a given project. Here, the results are color-coded by their ranking
scores, also highlighting the highly matched results.

The user can navigate the tree, or click on the “Filter” menu to
see a filtered view of the NSF funding tree. The Filter menu allows
the user to filter the NSF funding tree in the following aspects: filter
by the depth of the hierarchy structure, filter by funded year, filter
by funding amount, and filter by program or project status. When
filtering from low level nodes to high level nodes, more detail in-
formation is displayed on the high level nodes to enable informed
exploration.

One interesting question is ”Which directorate(s), division(s), or
program(s) offers more grants to the research organizations in a
specific location, for example, in California?” In addition to just
giving the unit list, we also provide the visual answer. When the
user selects several research organizations from the organization
tree (Here, locations, such as state, are used to form the organi-
zation tree.) in the organization views, the awards which belong
to these organizations are highlight in the treemap view and Pro-
gramVoyager view. In the treemap view, if the current leaf nodes
are the awards, then the matched awards are highlighted; otherwise,
the current leaf nodes are color-coded by the number of matched
awards in it, highlighting the nodes which contains more matched

188

awards. In the ProgramVoyager view, the unmatched program
stripes are displayed by the gray-color to un-highlight them, while
the matched stripes are highlighted to attract the user’s attention.
Here we take the treemap view as an example. In Figure 11, when
the user selects the research organization under node ”California”,
all the awards belong to this set are highlighted in the treemap view.
The user can also filter out the irrelevant awards and focus himself
only on the awards which belong to the location he selected. Figure
12 shows the filtered result. In this figure, the user can easily find
that nearly half of the awards in California are granted by direc-
torates MPS (Directorate for Mathematical and Physical Sciences)
and GEO (Directorate for Geosciences).

3.2.3 Animated Zooming

Animation can help catch a user’s eyemaintain object constancy
and thus improve task performance. To be able to explore the large
hierarchies in the treemap view efficiently, we use an interactive
smooth zooming to help users preserve their sense of position and
context. When the user clicks on a non-leaf node, this toolkit will
then smoothly zoom in to the selected node area. In other words,
only the subtree of selected node are displayed. Such kind of zoom-
ing operation allows the user to focus on the funding data which
belongs to this selected non-leaf item. The toolkit displays back the
whole funding hierarchy (zoom out) when the user clicks on the left
button again. Furthermore, when a user click a leaf node, a semi-
transparent view with the detail description of the funding programs
or proposals will dynamically expand to the whole screen, with the
treemap structure shown as a background.

The similar animated zooming is also supported in the Pro-
gramVoyager view. With such zooming operation, the user can
drill down from summary data to detailed data continuously, thus
encourage further exploration.

3.2.4 Bookmarks

One of the greatest challenges facing people who use large informa-
tion spaces is to remember and retrieve items they have previously
found and thought to be interesting. Bookmarks are the dominat-
ing approach to managing personal URL collections on the Web.
They serve as convenient shortcuts to frequently used Web pages as
well historical pointers to useful information that may otherwise be
forgotten.

To help users to ”re-find” information in the visual funding nav-
igator, we introduce the bookmark into this toolkit to help the user
remember and retrieve interesting funding information. With the
bookmark function, the user can create their own personal informa-
tion space and share it with others.

The major feature of the bookmark function is that it prioritizes
bookmark items and folders according to the user’s feedback over
time. The following feedbacks are utilized to prioritize the book-
mark items:

• Keystroke: important bookmark items should receive more
keystrokes than the unimportant ones.

k(i)
j =

N(i)
j

Ns
(1)

Where N(i)
j is the keystroke received by the j-th bookmark

item in the i-th iteration, and Ns is the total keystroke number
received by all the bookmark items in the i-th iteration.

• Recency: important bookmark items should have interacted
with the user more recently than the unimportant ones. The
following declining function is used to measure the recency:

d(i)
j =

1
time(i)

j

h(i)
j

+1
(2)

Where h(i)
j is the declining period in the i-th iteration, and

time(i)
j is the time elapsed from last visited. Initially, the same

declining period is set to all bookmark items. After the user’s
feedback, the periods of bookmark items are updated sepa-
rately by their own time elapsed between two clicks.

By combining equations (1) and (2), we obtain the weighting
function of bookmark item j.

w(i)
j = α1×w(i−1)

j +α2× k(i)
j +α3×d(i)

j (3)

where
α1,α2,α3 ≥ 0, α1 +α2 +α3 = 1, w0

0 = w0
1 = ... = w0

n−1 = 0
Furthermore, the weight of the bookmark folder is the sum of the

weights of the items contained in this folder.

4 VISUAL ANALYSIS OF NSF RESEARCH TRENDS

One major feature of this toolkit is that it provides a hybrid analysis
that involves both static and dynamic analysis to help the user well
understand the funding related information and reveal the research
trend of NSF organization. In this section, we will introduce these
two kind of analysis in detail.

4.1 Static Analysis
Static analysis will focus on the analysis of non-time-series data.
Here we mainly focus on analyzing the funding related hierarchical
data. In the visual funding navigator, we use two ways to organize
such kind of data: by the NSF organization structure and by the
locations where the investigators are located.

Treemaps are effective for trees where the nodes include quanti-
tative variables, particularly when large values are important. Since
the awarded amount is very important to both NSF officers and re-
searchers, therefore treemaps are utilized to visually analyze such
kind of data. In our treemaps of NSF funding data, the sizes of the
leaf rectangles reflect the funding amounts of the awards. As for the
non-leaf rectangle, its size reflects the cumulative funding amount
of the awards in its children. Thus such kind of treemaps provide a
snapshot of the NSF funding distribution. The user can easily find

• the award which has the largest funding amount;

• the popular research topics or locations which contains much
more funding amount than others.

Here we use an example to illustrate the static analysis func-
tion offered by treemap visualization. Figure 7 is the visualization
result of the currently active awards (31159 awards) on NSF web-
site. In this figure, the user can easily find that MPS (Directorate
for Mathematical and Physical Sciences) and GEO (Directorate for
Geosciences) are the two largest directorates in NSF, which offer
more grants than other directorates. Thus the research areas they
are funding are much more popular than other research areas.

Furthermore, this toolkit provides an overview of the top N popu-
lar research organizations (see Figure 9) which receive more grants
than other organizations, and the top N visited projects ((the visit
history view in Figure 8)). In this way, the user can quickly dis-
cover the influential research organizations and projects in a partic-
ular topic area.

In the popularity view (see Figure 9), the focus + context tech-
nique is adopted to improve the interaction of the traditional pie
charts. Users can select some of the interested slices and treat them

189

as the focus. Here we select the top N popular research organiza-
tions as the focus. The focus will be emphasized by increasing its
radius and meanwhile decreasing the radius of other slices. Thus
users can have a better view of the focused area, including its struc-
ture and the small slices.

4.2 Dynamic Analysis

Dynamic analysis will focus on the analysis of time-series data.
Such kind of analysis accounts for the fact that data taken over time
may have an internal structure (such as autocorrelation, trend or
seasonal variation) that should be accounted for. In our toolkit, the
stacked graph [10] is utilized to dynamically analyze the time-series
data embedded in the funding information, i.e., the time distribution
of the funding amount for each of the 459 active NSF programs
from 1992 to 2011.

The method to visualize the time-series data is as follow: given
a set of the time distribution of the funding amount, a set of stacked
graphs is produced, as in Figure 10. The x-axis corresponds to date,
and the y-axis to the total funding amount for all the active pro-
grams currently in view. Each stripe represents a program, and the
thickness of a stripe is proportional to its funding amount at the
given time step.

The above visualization method will help the user track the NSF
program trends, thus help the user dynamically analyze the focus
topic of interest. More exactly, it provides the following analysis
capabilities.

First, it allows the user to see and analyze the distribution of
funding amount over time. Then the user can easily detect which
programs are the currently popular ones and which programs are
much more popular than before. For example, in Figure 10, pro-
grams ”Quantitative Environmental Integrate Biology”, ”Margins
Program”, ”Ocean Drilling Program”, ”Research Experiences for
Undergraduates”, and ”Engineering Research Centers” are the cur-
rently most popular programs. They received more funding in 2006.

5 CONCLUSIONS

In this paper, we present a visual funding navigator, which can help
the user to navigate and analyze the funding data on the NSF offi-
cial website. This toolkit allows the user to take the advantages of
treemap visualization and stacked graph to understand the funding
related information more quickly.

One major feature of this toolkit is that we have designed a new
kind of treemaps, 2.5D labeled treemaps, to provide a clear view
of hierarchies. The main novelty of the proposed method is to use
cascading rectangles to represent the hierarchy instead of the nest-
ing ones. We also design a new layout algorithm to address the
problem with the proportioned area of rectangles caused by the in-
creased margin space and label space. Furthermore, an incremental
layout method is adopted to handle information on a large scale.

Another major feature of this toolkit is that it provides hybrid
analysis that involves both static and dynamic analysis to help the
user well understand the funding related information and reveal the
research trend of NSF organization.

We regard the work presented as initial, there are improvements
to be made as well as many directions to pursue. The future work
will be focused on applying these techniques in a more traditional
analytical context and conducting more rigorous evaluations. As
the online proposal collection continue to spread and diversify, we
also anticipate the need for additional design approaches balancing
utility and holistic experience, enabling information visualization
technologies to take on an increasingly important role in both ana-
lyzing the online proposal collection and detecting potential oppor-
tunities.

6 ACKNOWLEDGMENTS

We would like to thank Martin Wattenberg for providing the source
code of NameVoyager. We would like to thank Bernice E Rogowitz
for constructive suggestions on the Treemap layout. We would also
like to thank Haiyan Guo and Xinghua Lou for their advice and
suggestion on the UI design.

REFERENCES

[1] B. Johnson and B. Shneiderman., “Treemaps: a space-filling ap-
proach to the visualization of hierarchical information structures,” in
Proceeding of the 2nd International IEEE Visualization Conference,
1991, pp. 284–291.

[2] B. Shneiderman, “Treemaps for space-constrained visualization of hi-
erarchies,” http://www.cs.umd.edu/hcil/treemap-history/.

[3] G.-A. Jungmeister and D. Turo, “Adapting treemaps to stock portfolio
visualization,” Technical Report UMCP-CSD CS-TR-2996, Univer-
sity of Maryland, College Park, Maryland 20742,USA, 1992.

[4] M. Wattenberg, “Visualizing the stock market,” in CHI ’99 Extended
Abstracts on Human Factors in Computing Systems, 1999, pp. 188–
189.

[5] D. Turo, “Hierarchical visualization with treemaps: Making sense of
pro basketball data,” in Conference companion on Human factors in
computing systems, 1994, pp. 441–442.

[6] L. Jin and D. C. Banks, “Hierarchical visualization with treemaps:
Making sense of pro basketball data,” IEEE Computer Graphics and
Applications, vol. 17, no. 4, pp. 63–65, July/August 1997.

[7] T. Asahi, D. Turo, and B. Shneiderman, “Visual decision-making: us-
ing treemaps for the analytic hierarchy process,” in Conference com-
panion on Human factors in computing systems, 1995, pp. 405 – 406.

[8] A. Orso, J. Jones, and M. J. Harrold, “Visualization of program-
execution data for deployed software,” in Proceedings of the ACM
Symposium on Software Visualization, 2003, pp. 67–76.

[9] M. Balzer, O. Deussen, and C. Lewerentz, “Voronoi treemaps for the
visualization of software metrics,” in Proceedings of the ACM Sympo-
sium on Software Visualization, 2005, pp. 165–172.

[10] M. Wattenberg, “Baby names, visualization, and social data analysis,”
in Proceeding of IEEE Symposium on Information Visualization 2005
(InfoVis2005), 2005, pp. 1–7.

[11] H. L. SX Liu, N Cao and H. Su, “The visual funding navigator: Anal-
ysis of the nsf funding information,” in Proceeding of ACM fifteenth
Conference on Information and Knowledge Management, 2006 (ac-
cepted).

[12] S. G. Eick, “Visualization and interaction techniques,” in CHI97 Tu-
torial notes on Information Visualization. ACM SIGCHI, 1997.

[13] J. van Wijk and H. van de Wetering, “Cushion treemaps - visualization
of hierarchical information,” in Proceedings 1999 IEEE Symposium
on Information Visualization (InfoVis99), 1999, pp. 73–78.

[14] K. H. Mark Bruls and J. J. van Wijk., “Squarified treemaps,” in Pro-
ceedings of the Joint Eurographics and IEEE TCVG Symposium on
Visualization, 2000, pp. 33–42.

[15] T. Bladh, D. Carr, and J. Scholl, “Extending tree-maps to three dimen-
sions: a comparative study,” in Proceedings of the 6th Asia-Pacific
Conference on Computer-Human Interaction (APCHI 2004), 2004,
pp. 50–59.

[16] B. Shneiderman, “Tree visualization with tree-maps: 2-d space-filling
approach,” ACM Transaction on Graphics, vol. 11, no. 1, pp. 92–99,
January 1992.

190

