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Advanced technologies such as mobile phones 
and the Internet have greatly increased the 
quantity and accessibility of text docu-

ments. Devices and their users are generating mas-
sive numbers of documents at a high frequency—for 
example, daily, hourly, or by-the-minute emails, 
messages, and webpages. This has introduced the 
urgent need for efficient storage, processing, and 

analysis of such constantly grow-
ing text collections. Recently, 
researchers have successfully ap-
plied visualization tools to pro-
cess and analyze text data. (For 
more on this, see the sidebar.)

Visual exploration of text 
streams is a challenge. First, be-
cause these streams continuously 
evolve, we need visualization 
aids to trace the temporal evolu-
tion of existing topics, monitor 
emerging topics, and examine 
the relationships between them. 
Second, such visualization sys-
tems should process text streams 

without prescanning an entire stream or assum-
ing a priori knowledge. Third, users should be able 
to change their information-seeking focus at any 

time and receive immediate feedback. Such inter-
activity is a decisive factor for a visual analytic 
system in real applications in which domain users 
usually don’t know the text streams in advance. 
Finally, the system should scale to large volumes 
of text streams and respond to their evolution in 
real time.

To meet these challenges, we designed Streamit, 
a dynamic visualization system for exploring text 
streams.1 Figure 1 illustrates Streamit’s infra-
structure. Streamit is based on a dynamic force-
directed simulation into which text documents are 
continuously inserted. A dynamic 2D display pre-
sents the incoming documents. Users can explore 
documents and document clusters on the basis 
of keywords or topics. They can discover emerg-
ing patterns online by monitoring the real-time 
display. They can also examine historical data’s 
temporal evolution through animations that play 
back past streams. Streamit lets users manipulate 
the display’s visual structure on the fly.

Streamit’s current version incorporates five fea-
tures that enable effective text stream visualiza-
tion. First, users can examine and interact with the 
stream’s continual evolution. Second, Streamit al-
lows dynamic processing through dynamic keyword 
vectors that upgrade adaptively in accordance with 

Streamit lets users explore 
visualizations of text streams 
without prior knowledge 
of the data. It incorporates 
incoming documents from 
a continuous source into an 
existing visualization context 
with automatic grouping and 
separation based on document 
similarities. A powerful user 
interface allows in-depth data 
analysis.
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incoming documents. Third, dynamic keyword im-
portance presents a keyword’s importance at a spe-
cific time and lets users change the importance and 
see the results in real time. Fourth, Streamit uses 
topic modeling and dynamic clustering to increase 
its scalability. Finally, it employs a similarity grid 
and parallel processing to optimize performance.

The Force-Based Dynamic System
Streamit represents each document as a mass par-
ticle moving inside a 2D visualization domain. 
We define the potential energy by pairwise text 
similarity between documents. Minimizing the 
system’s total potential energy moves similar doc-
ument particles closer and drives away dissimilar 
ones, which we achieve by attractive and repul-
sive forces between particles. Consequently, equi-
librium of the particles visually depicts the data 
clusters and outliers at a particular moment. As 
new particles are injected, Streamit automatically 
adjusts its visual output. The dynamic behavior is 
critical for reducing change blindness when new 
patterns emerge.

This physical model is well suited for the contin-
uous depiction and analysis of growing document 
collections. Text documents enter the system at any 
time and automatically join clusters of related col-
lections. The particles in the system travel continu-
ously under the impact of new particles. So, the 
visual structures gradually evolve without abrupt 
changes that break the mental picture users have 
already formed. Particular particles’ erratic motion 
(for example, moving from one cluster to another) 
might reveal outliers or significant new trends. This 
provides an advantage over existing static or time-

window-based visualization approaches, which de-
pict only stationary data patterns or the sporadic 
transitions between these patterns.

Particle Potential
The particles’ velocity and acceleration follow 
Newton’s law of motion. Each pair of particles has 
a potential energy Fij:

Φij i j ijl= − −( )a l l
2
,

where a is a control constant and li and lj are the 
positions of document particles pi and pj. Whereas 
l li j−  represents the two particles’ Euclidian 

distance, lij is their ideal distance (we discuss this 
more in the next section). So, this pair potential 
function models the deviation of the two particles 
from their ideal locations, which is achieved at 
zero potential.

Particle Similarity
We determine an optimal layout by defining lij. We 
obtain lij from the pairwise similarity computed 
from the documents’ keywords:

lij = 1 – d(pi, pj),

where d(pi, pj) ∈ [0, 1] is the cosine similarity 
between pi and pj. Documents with a high similarity 
will have a smaller lij and will be clustered more 
closely in the visualization.

The Force-Directed Model
A global potential function is the sum of the 
pairwise energy:
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Figure 1. The Streamit system. A dynamic 2D display presents continuously incoming text documents. Users 
can explore the documents and clusters on the basis of keywords or topics in the dynamic display.
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where N is the particle number and l1, …, lN 
represent these particles’ current locations.

We minimize the system’s potential to an 
equilibrium state that provides a global opti-
mized placement of these particles. To achieve 
this optimization, a numerical simulation mini-
mizes the global potential with a sequence of 
time steps. At each time step, the minimization 

leads to forces acting on each particle:

F Vi Ni=−∇ ( )l l l1, ,… ,

which attracts or repulses particles from each 
other. From Newton’s law, we get

Fi = miai,

where mi is the mass and ai is the particle accelera-
tion. We compute ai as

Many text visualization systems use similarity-based 
projection to help users gain insight from large 

text collections. James Wise and his colleagues used 
multi dimensional scaling to map documents with similar 
content closely to each other, thus forming “galaxies” 
or “mountains” in the displays.1 Fernando Paulovich and 
Rosane Minghim proposed a point placement approach 
to build a hierarchy of documents and project them as 
circles.2 Unlike these approaches, Streamit uses a dynamic 
similarity-based projection system to depict text streams 
(see the main article).

Related to our aim to handle continuous incoming text 
streams, TextPool produced a visual summary that clus-
tered related terms as a dynamic textual collage.3 Unlike 
Streamit, it visualized very recent stream content as a par-
tially connected graph, which was “not for analyzing any 
significant portion of stream history.”3 Also, the graph rep-
resented the stream’s salient terms instead of documents.

Pak Chung Wong and his colleagues dynamically visual-
ized stream data in a moving time window using incremen-
tal data fusion.4 Their approach inserted newly arrived data 
items into the existing layout when the similarity place-
ment’s error was smaller than a given threshold. Once the 
error exceeded the threshold, their approach recalculated 
the whole layout. Unlike Streamit, it didn’t address interac-
tive exploration and user control.

Eventriver processed incoming documents on the fly us-
ing dynamic keyword processing and an incremental text-
clustering algorithm.5 Individual documents weren’t visible 
from the overview of the stream. In contrast, Streamit lets 
users examine individual documents within the global tem-
poral and similarity context.

Elizabeth Hetzler and her colleagues visualized text 
collections in a 2D projection space, distinguishing fresh 
and stale documents.6 They applied In-Spire1 to dynamic 
document flow. When new documents were added, their 
approach adjusted the existing vocabulary content and 
regenerated the visual results. However, their approach 
didn’t show an animated transition of the view. In con-
trast, Streamit reveals the stream’s evolution in detail with 
controllable transient animations.

Unlike methods that work on static high-dimensional 
data, our approach visualizes text streams using force-
directed placement (FDP).7 FDP has O(N3) complexity, 
which urges researchers to improve its computational per-
formance. On the other hand, improvements restrict force 
calculations to a subset of the entire data, which could 
lead to misleading approximated results. To ensure correct 
dynamic behavior, we avoid reducing the force computa-
tion to only some of the particles. Instead, we spatially 
divide the visualization domain to quickly locate the par-
ticles’ appropriate initial position. More important, we use 
GPU acceleration to fully exploit the parallel nature of the 
simulation algorithm, which achieves dramatic speedup.

References
 1. J.A. Wise et al., “Visualizing the Non-visual: Spatial Analysis 

and Interaction with Information for Text Documents,” 

Readings in Information Visualization: Using Vision to Think, 

Morgan Kaufmann, 1999, pp. 442–450.

 2. F. Paulovich and R. Minghim, “Hipp: A Novel Hierarchical 

Point Placement Strategy and Its Application to the Explora-

tion of Document Collections,” IEEE Trans. Visualization and 

Computer Graphics, vol. 16, no. 8, 2008, pp. 1229–1236.

 3. C. Albrecht-Buehler, B. Watson, and D. Shamma, “Visualiz-

ing Live Text Streams Using Motion and Temporal Pooling,” 

IEEE Computer Graphics and Applications, vol. 25, no. 3, 2005, 

pp. 52–59.

 4. P.C. Wong et al., “Dynamic Visualization of Transient Data 

Streams,” Proc. IEEE Symp. Information Visualization, IEEE CS 

Press, 2003, p. 13.

 5. D. Luo et al., “Eventriver: An Event-Based Visual Analytics 

Approach to Exploring Large Text Collections with a Tem-

poral Focus,” to be published in IEEE Trans. Visualization and 

Computer Graphics.

 6. E.G. Hetzler et al., “Turning the Bucket of Text into a Pipe,” 

Proc. 2005 IEEE Symp. Information Visualization (Infovis 05), 

IEEE CS Press, 2005, p. 12.

 7. T. Fruchterman and E. Reingold, “Graph Drawing by Force-

Directed Placement,” Software—Practice and Experience, vol. 

21, no. 11, 1991, pp. 1129–1164.

Related Work in Text Visualization



 IEEE Computer Graphics and Applications 37

a
l

m
i

i j ij
j

i
=

− −( )∑2 a l l
,

which we use to update the location of pi at each 
time step. When every particle no longer moves (in 
numerical computing, the displacement is smaller 
than a threshold x), the system’s visual layout is 
optimized.

Figure 2 describes the basic computing proce-
dure, which assumes that every particle has the 
same unit mass. The constant a is an empirical 
parameter controlling the force (a = 0.01 in our 
case studies) so that the numerical simulation is 
stable. That is, no particle will exit the 2D domain 
or be squeezed to the domain’s center.

Improving Interactive Exploration  
and Scalability
To provide advanced data exploration, Streamit 
incorporates the following techniques.

Dynamic Keyword Importance
Typically, text visualization approaches compute 
d(pi, pj) by a predefined formula—for example, co-
sine similarity—from the keyword vector of pi and pj. 
However, stream text collections usually span a long 
period of time. For a real-world stream, one keyword 
might constantly appear over a period of time and 
then fade out, whereas another might frequently 
pop up. Although users typically don’t have knowl-
edge about the incoming documents, they’ll change 
their focus of interest as the stream evolves. So, the 
definition and computation of similarity should in-
stead be a function of time and be user-adjustable.

To address this challenge, we propose computing 
dynamic keyword importance in addition to d(pi, 
pj), which will let users manipulate the keywords’ 
significance at any time. The classic cosine simi-
larity can be improved as

d p p
w I w I

w I w I
i j

ik k jk k
k

K

ik k jk k
k

,( )=
( )( )

( ) ⋅ ( )
=

=

∑ 1
2 2

111

n

k

K ∑∑ =

,

where Ik is the importance of keyword k, K is the 
number of keywords, and wik is the weight of k in 
pi. The classic cosine similarity can be considered 
a special case in which Ik = 1. All the K weights 
form this document’s keyword vector. Streamit 
dynamically updates the current vector’s length, 
so that the system can handle live data streams.

We calculate keyword weight as

w O
N
n

ik ik
k

= ∗ log2 ,

where Oik is the occurrence of k in i, N is the 
total number of documents, and nk is the number 
of documents in N that contain k. The inverse- 
document-frequency factor N/nk favors the key-
words concentrated in a few documents of a 
collection, compared to keywords with a similar 
frequency that are prevalent throughout the 
collection.2

Users can freely modify the keyword importance 
through the visual interface, which presents 
frequent keywords in an ordered list. Furthermore, 
Streamit can automatically determine importance 
as follows (we discuss this in more detail later):

Ik = a * Ok + b * (tek – tsk) + c * nk. (1)

Ok is the occurrence of k in the current existing 
documents, tek is the last time it appears, and tsk 
is the first time it appears. The equation (tek – tsk) 
increases the importance for older keywords; nk 
increases the importance for keywords appearing 
in many different documents. Here, a, b, and c are 
positive constants satisfying a + b + c = 1; users 
select them to specify preferences for the three 
factors. In our experiments, we used a = 0.3, b = 
0.3, and c = 0.4.

Topic-Based Visualization
Streamit might have trouble revealing clusters 
when the keyword space’s dimensionality is too 
high, owing to the lack of data separation in such 
high-dimensional spaces. Recent topic-modeling 
techniques, such as latent Dirichlet allocation 
(LDA),3 reduce the keyword-document space to a 
much lower feature space that not only is intuitive 
to interpret but also captures most of the variance 
in the corpus. In particular, topic modeling 
automatically represents the documents using a 

Set the maximum displacement D as a large value
while D > x do
  for i = 0 to N – 1 do
    for j = i + 1 to N do
      Fi + = 2 * a(|li – lj| − lij)
    end for
  end for
  for i = 0 to N – 1 do
    ai = Fi/mi
    update this particle’s position
    update the maximum displacement D of all particles
  end for
end while

Figure 2. The dynamic-simulation algorithm. The force F is exerted on 
the particles, causing them to move toward optimal distances. The 
simulation stops when the displacement is no longer significant. For an 
explanation of the terms, see the section “The Force-Based Dynamic 
System” in the main article.
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set of probabilistic topics, which are described by 
a probability distribution over keywords.

We use LDA to extract topics from a large doc-
ument archive that’s highly related to the text 
stream to be visualized, such as its historical ar-
chives. We associate each extracted topic with a 
set of keywords highly related to the stream. Dur-
ing the ongoing visualization, Streamit dynami-
cally examines whether an incoming document 
contains the extracted topics according to its key-
words. It then represents the document by a vector 
of the probable weights of that document’s topics. 
All the aforementioned calculation, visualization, 
and interactions based on keywords can be applied 
to the topics.

The benefits are significant. Because there are 
many fewer topics than keywords, the documents 
are clustered better. Because the topics are at a 
higher semantic level than the keywords, users can 
more easily understand the generated clusters (we 
discuss this in more detail later). For example, in-
terdisciplinary proposals covering multiple topics, 
which are difficult to identify in the keyword-based 
approach, can be easily detected in the topic-based 
approach.

Dynamic Clustering
The distribution of document particles in the 2D 
space lets users visually identify clusters of docu-
ments with similar semantics. However, on the 
basis of individual particles, it’s difficult to con-
duct cluster-level operations, such as selecting all 
documents in a cluster and examining a cluster’s 
semantics. To address this problem, Streamit au-
tomatically discovers clusters from the evolving 
geometric layouts, so that they can be explicitly 
presented and manipulated through the visual in-
terface. Moreover, the visualization can display a 
text stream at the cluster level to reduce clutter 
and enhance scalability.

Cluster generation. At a particular moment, a group 
of document particles can be considered to form a 
semantic cluster with this definition:

If particles s and t are in a cluster, there must at 
least exist a path between s and t that connects 
a sequence of particles, s, p0, p1, …, pc, t, with a 
pairwise line segment, s → p0, p0 → p1, …, pc → 
t. The connected segments’ maximum length 
is shorter than the predefined threshold ζ.

Here we use the single-linkage rule to define 
clusters, which considers connected components 
(with respect to ζ) as one cluster. We discover such 
clusters directly from the 2D geometric layout. In 
particular, we can apply a typical agglomerative 
algorithm to partition all particles into clusters.

Starting with N particles forming N clusters, 
we repeatedly merge two clusters according to the 
distance between their nearest neighbors. This 
straightforward approach has O(N2) complexity 
and doesn’t use the particles’ geometric layout. 
However, it represents the resultant clusters only 
by individual particles and provides no topological 
information.

Because an effective visualization should dis-
tinctly show these clusters’ spatial areas, we apply 
a computational-geometry method to create a sim-
ple polygon from each cluster’s particles. Similarly 
to research in spatial data mining,4 we propose a 
two-step algorithm (see Figure 3):

1. Apply Delaunay triangulation for all particles 
in the system.

2. In the created graph (the triangle mesh), cut the 
edges that are longer than ζ.

The graph cuts partition the particles into disjoint 
sets (that is, connected components) representing 
the semantic clusters.

(a) (b) (c)

Figure 3. Cluster generation. (a) The original particles. (b) Delaunay triangulation results. (c) Graph cut results. The graph cuts 
partition the particles into disjoint sets (that is, connected components) representing the semantic clusters.
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This method has a complexity of O(NlogN) + 
O(E) for N particles, with O(NlogN) for Delaunay 
triangulation and O(E) for browsing all E edges in 
the graph cuts. In Delaunay triangulation, the max-
imal number of edges is 3N – 6, O(E) ~ O(N). So, 
our method achieves O(NlogN), which is compu-
tationally faster than the agglomerative algorithm.

Cluster evolution. The created clusters merge and split 
over time when new documents arrive or keyword 
importance changes. Such evolution is critical for 
knowledge discovery and should be tracked and 
visualized.

To track cluster evolution, we give each cluster 
a distinct ID; each particle carries its cluster’s ID. 
To manage cluster identification in a context-aware 
way, we compute a preferred ID list for each new 
cluster. The list ranks the IDs of all the particles in 
the cluster before the update, according to the num-
ber of the particles with the same ID. The largest 
new cluster receives the top ID in its list. Then, we 
iteratively choose a cluster according to its size (that 
is, number of particles). Each cluster receives an ID 
following the order of its preferred list, if we haven’t 
assigned that ID to other clusters. If all ID choices 
are occupied, a cluster receives a new ID that didn’t 
appear in the previous step. So, large clusters tend 
to keep their contextual information over time.

We associate each ID with a color, which we 
also assign to the cluster with that ID. To avoid 
color clutter, we set a threshold K of the number 
of significant clusters. The largest K clusters appear 

with background halos in their colors; the other 
clusters don’t. (We discuss these things more in 
the next section.)

Visualization
Streamit has a main window, an animation control 
panel, a keyword or topic table, and a set of docu-
ment tables (see Figure 4). Refer to the video at 
http://doi.ieeecomputersociety.org/10.1109/MCG. 
2011.91 for a description of the visual layout and 
a few examples on real datasets.

The Main Window
This window (see Figure 4a) visually presents the 
particles’ movement through an animated 2D 
display. A pie chart represents each particle, with 
colored slices indicating keywords of interest. The 
pies’ closeness reflects the documents’ similarities. 
The pies’ positions dynamically change to reveal 
the stream’s temporal evolution. Shades of gray 
indicate document age; the older a document is, 
the darker it is. Users can adjust the pies’ size and 
transparency to reduce clutter that appears as the 
number of documents grows.

The Animation Control Panel
Streamit buffers recent documents into a moving 
time window called the buffer window, which is 
larger than the window displaying the current doc-
uments. Users can play back the animation in the 
buffer window to examine the buffered stream’s 
temporal and semantic evolution in detail.

(a)

(c)

(d)(b)

Figure 4. Streamit’s interface. (a) The main window displays the particles’ movement. (b) The animation 
control panel lets users navigate through the simulation. The (c) keyword table and (d) document table are 
synchronized with the particle stream to maintain an up-to-date list of the keywords and documents.



40 January/February 2012

Visualization Applications and Design Studies

The animation control panel controls playback 
(see Figure 4b). Users can move the slider to start the 
animation at any point in time. They can also pause 
the display to examine a moment of the stream or 
change parameters such as keyword importance.

The Keyword or Topic Table
Streamit provides keyword information in a table 
that’s updated dynamically (see Figure 4c). This 
table lists the keywords for the displayed documents 
and their frequencies, importance, and colors.

Alternatively, the table can display topic infor-
mation. In this case, it shows not only the topics 
but also their significant keywords.

Document Tables
Users can click on a tab to view one of four tables 
(see Figure 4d):

 ■ buffered documents,
 ■ documents displayed in the main window,
 ■ documents selected by users, and
 ■ document clusters generated by the system or 
created by users.

Users can sort the documents by their authors 
or time stamps. They can also click on a title to 
access the document’s full text.

Labeling
Because document titles contain rich semantic in-
formation in a condensed manner, Streamit uses 
them as document labels. However, displaying all 
the titles could create severe clutter. So, we devel-
oped a labeling algorithm to provide the most re-
cent semantic information with user-controllable 
clutter levels.

Streamit generates clusters according to a dis-
similarity threshold. In each cluster, the dissimi-
larities among the documents are less than the 
threshold, and only the most recently arrived 
document is labeled. By changing this threshold, 
users can control the label clutter. A newly arrived 
document is either assigned to an existing cluster 
or forms a new cluster. So, no label will change 
except that of the affected cluster. This feature 
maintains temporal consistency among adjacent 
displays. The newest injected document will al-
ways be labeled, which is usually desired in text 
stream visualization.

Figure 4a shows the automatic-labeling results. 
Streamit highlighted the newest injected document 
and its label in red and highlighted the selected 
documents and their labels in orange.

Labels and particles might overlap when many 
documents are displayed. Streamit displays labels 
on the top of particles and lets users interactively 
change the transparency of the labels’ backgrounds. 
An opaque background makes labels easy to read; a 
semitransparent background lets users examine par-
ticles underneath the labels. Users can turn all labels 
off or turn a specific label on or off by clicking on it.

The Visual Representation of Clusters
After Streamit creates clusters, triangle meshes rep-
resent their outlines. Streamit places background 
halos in the mesh area for significant clusters (see 
Figures 5a and 5b).

(a)

(1)

(2)

(5)

(4)

(3)

(7)

(6)

(b) (c)

Figure 5. US National Science Foundation Information and Intelligence Systems (NSF IIS) award data with topic modeling. (a) On 1 
Sept. 2000, there were 172 research projects. Haloes indicate significant clusters. Red pie slices indicate topic 16 in Table 1; green 
slices indicate topic 19. (b) On 15 Sept. 2001, there were 330 research projects. Clusters 1 and 2 from Figure 5a have merged into 
cluster 3. Clusters 4 (mainly about topic 13) and 5 (mainly about topic 12) are new. (c) A spiral view of Figure 5b lets users examine 
the clusters’ temporal trends. Clusters 6 and 7 indicate spiral views of clusters 4 and 5, respectively, in Figure 5b.

Table 1. A table of topics.

Topic no. Keywords

2 Data, Mine, Cluster, Graph, Biology, Analysis, Discovery

6 Image, Scene, Model, Recognition, Language, Shape, Speech

12 Biological, Protein, Genome, Search, Gene, Sequence, Patent

13 Video, Motion, ASL, 3D, Camera, Sign, Dance

15 Image, Speech, Haptic, Display, Impair, Auditory, Graphic

16 Query, Database, Data, XML, Stream, Edu

19 Data, Workflow, Privacy, Management, Web, Metadata



 IEEE Computer Graphics and Applications 41

Users can also examine clusters’ temporal trends 
in a less cluttered spiral view.5 Figure 5c shows a 
spiral view of 12 clusters. Each spiral is a time axis 
located at the center of a cluster in the original 
2D display. The cluster documents, displayed as pie 
charts, are mapped to the spiral according to their 
time stamps. The pie charts’ distribution indicates 
the cluster’s temporal trends.

In the topic-modeling view, pies have two col-
ors indicating how documents are related to the 
cluster’s general topics. In Figure 5c, red indicates 
the number of topics the document shares with 
other documents in the cluster. Yellow indicates 
the number of other topics in this document.

Users can quickly examine an unknown clus-
ter through a keyword cloud triggered by selecting 
the cluster. It displays the cluster’s most significant 
semantic information—the titles of the most re-
cently arrived documents and the keywords with 
the highest TF-IDF (term frequency-inverse docu-
ment frequency) weights.

Figure 6 shows the keyword clouds for clusters 4 
and 5 in Figure 5b. The keywords appear below the 
titles; a keyword’s size indicates its weight. Users 
can interactively set the colors of the background, 
titles, and keywords.

Interaction
Streamit lets users interactively manipulate the 
visualization according to varying interests. They 
can also search, track, and examine documents.

2D Display Manipulation
Streamit provides four types of 2D display 
manipulation.

Adjusting keyword importance. Users can adjust the 
keyword importance in the keyword table to em-
phasize specific content and receive an immediate 
response (see Figure 7).

Grouping and tracking documents. Users can use the 
different-colored halos to highlight selected groups 
or automatically computed clusters, which promotes 
easy document tracking in the dynamic display. 
Figure 4a shows a cluster in orange and one in blue.

Browsing and tracking keywords. Users can assign 
colors to keywords of interest to track them. In 

(a)

(b)

Figure 6. Keyword clouds for clusters (a) 4 and (b) 5 in Figure 5b. The 
keywords appear below the titles; a keyword’s size indicates its weight. 
By clicking on a keyword, users can select all documents with this 
keyword from the cluster.

(a)

(1)
(2)

(3)

(4)

(b) (c)

Figure 7. Barack Obama news. (a) On 13 Aug. 2010, there were 136 news articles. Cluster 1 indicates a group of “US and 
International Affairs” articles. (b) After we increased the importance of the keyword “International Relations,” Streamit placed 
articles with this keyword more closely together. Cluster 2 is a group of articles we labeled “War”; cluster 3 is the “Terrorism” 
group. (c) On 18 Sept. 2010, there were 230 news articles. Cluster 3 in Figure 7b has grown considerably, and a recent news 
article (cluster 4) now comes between it and cluster 2. Green indicates “Politics,” red indicates “International Relations,” yellow 
indicates “Terrorism,” and blue indicates “Defense and Military.”
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each pie, a colored slice’s size is proportional to 
its keyword’s weight in the document. Users can 
investigate keyword and document relations and 
track the evolution of relevant topics in this way 
(see Figure 7). They can also click on a keyword 
of interest in the keyword table, and halos will 
highlight all documents with that keyword. Users 
can sweep the keyword table in this way to find 
keywords of interest.

Setting moving windows. Users can interactively 
change the length of the moving window—that 
is, the period to be investigated—of the currently 
displayed documents.

Document Selection
Streamit offers five ways to select documents.

Manual selection. Users can manually select docu-
ments from the document tables or use rubber-
band selection by dragging the mouse. Halos 
highlight the selected documents (see Figure 4a), 
and the selected document table displays the docu-
ments’ information (see Figure 4d).

Example-based selection. Users can choose the cur-
rent selected documents as examples and select 
documents that are within a specified distance 
from them. They can easily control the range to 
select similar documents.

Keyword-based selection. Users can select multiple 
keywords from the keyword table (see Figure 4c). 
Streamit then automatically selects and highlights 
the related documents (see Figure 4a).

Cluster-based selection. Users can click the back-
ground halo of a cluster or its spiral to select all 
the documents in it. They can also click a keyword 
in a keyword cloud to select all the documents in 
that cluster that contain the keyword.

The shoebox. Users might want to focus on temporal 
evolution and examine the selected documents 
later. They can easily send those documents into 
the shoebox for later examination of the full text.

Three Case Studies
For these case studies, we first sorted documents 
in prerecorded collections by their time stamps. 
We then fed them to Streamit at intervals of a few 
seconds to simulate a quickly evolving text stream.

Exploring Barack Obama News
We explored a text stream of 230 New York Times 
news items about Barack Obama reported between 
19 July and 18 September 2010. We gave the key-
words the tags that come with the news. In each 
document, we assigned the occurrences of the key-
words a value of one. The buffer window covered 
the whole stream. Streamit automatically assigned 
keyword importance, using Equation 1.

Figure 7a shows the display for 13 August 2010, 
which represents 136 news articles. On that date, 
keywords such as “Politics and Government,” “In-
ternational Relations,” “Defense and Military,” 
and “Terrorism” had high-frequency values, ac-
cording to the keyword table. We assigned them 
distinct colors to track the articles characterized 
by them, as Figure 7a illustrates.

We then increased the importance of “Interna-
tional Relations.” Figure 7b shows that the articles 
with this keyword are closer than in Figure 7a. We 
easily selected them using rubber-band selection 
and found in the shoebox that they contained 
keywords such as “China,” “Terrorism,” and “Af-
ghanistan War.”

We wanted to focus on “Afghanistan War” and 
“Terrorism” because most of those news articles 
had been recently inserted (and therefore had a 
lighter shade of gray). We clicked on “Afghanistan 
War” to select the related articles and created a 
group named “War” for them. We highlighted 
that group with pink halos (see cluster 2 in Figure 
7b). We created another group for “Terrorism” in 
the same way and highlighted it with orange halos 
(see cluster 3 in Figure 7b).

Then, we continued to play the animation and 
track these groups’ evolution. Figure 7c shows the 
visualization when all the news articles were dis-
played. Cluster 3 in Figure 7b grew considerably. 
Also, a recent news article (cluster 4 in Figure 
7c) came between it and cluster 2 in Figure 7b. 
This new cluster was related to both “Afghanistan 
War” and “Terrorism.” We selected this article and 
read it in full detail by clicking on the pie.

Exploring NSF Award Abstracts
We explored 1,000 US National Science Founda-
tion Information and Intelligent Systems (NSF IIS) 
award abstracts funded between March 2000 and 
August 2003 as a text stream. The time-varying 

Users can choose the current selected 
documents as examples and select 

documents that are within a specified 
distance from them.
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funding behavior is critical in understanding re-
search and administrative trends. We automati-
cally characterized each document with a set of 
keywords; its corresponding pie’s size was propor-
tional to the project’s funding.

Figures 8a and 8b show the stream in two adja-
cent months. Multiple large projects started in the 
second month. We paused the animation, selected 
items of interest, and examined them in detail. 
From the shoebox, we observed that the keywords 
“Management” and “Database” appeared in many 
of these project’s abstracts. We highlighted “Man-
agement” in red and “Database” in green. We also 
increased their importance so that we could ob-
serve the relevant abstracts more easily (see Fig-
ure 8b). Although some abstracts contained both 
keywords (indicated by the arrow in Figure 8b), 
many others contained only one of them. We 
pulled back the animation to the previous month 
(see Figure 8a) to examine these topics’ temporal 
evolution. When the stream further evolved, we 
observed that IIS continuously supported projects 
with these keywords (see Figure 8c).

In Figure 8c, we highlighted all projects contain-
ing “sensor” with halos. The node with a halo in-
dicated by the arrow is a potential transformative 
proposal because it’s far from the other projects 
with halos. We examined this abstract in detail 
and found that it was a project about just-in-time 
information retrieval on wearable computers.

Evaluating Topic Modeling and Dynamic Clustering
Using the NSF data from the previous case study, 
this case study applied topic modeling and dynamic 
clustering to increase Streamit’s scalability.

Figures 8b and 5a illustrate keyword-based and 
topic-based visualization (respectively) for the 
same set of documents for the same month. Many 
documents that seemed unrelated to other docu-

ments in Figure 8b actually belonged to clusters 
in the higher semantic level in Figure 5a. Table 1 
lists topics involved in Figure 5a. Topics 16 (the 
red slices in Figure 5a) and 19 (the green slices 
in Figure 5a) contain “Database” (the red slices 
in Figure 8b) and “Management” (the green slices 
in Figure 8b). The related clusters’ semantics are 
easier to understand in the topic-based visualiza-
tion than in the keyword-based visualization.

Figures 5a and 5b demonstrate dynamic cluster 
evolution. Figure 5a shows a handful of clusters. 
Cluster 1 is mainly about topic 15, and cluster 2 is 
mainly about topic 6. In Figure 5b, these two clus-
ters merge into one larger cluster (cluster 3). Two 
new clusters also appear: cluster 4 is mainly about 
topic 13, and cluster 5 is mainly about topic 12. 
The visual effects help users identify critical data 
variations. Figure 6 shows the two new clusters’ 
keyword clouds.

Figure 5c displays the spiral view of the clusters 
in Figure 5b. Cluster 6 represents cluster 4 in Figure 
5b, and cluster 7 represents cluster 5 in Figure 5b. 
The two or three most significant topic names for 
a cluster appear below its spiral. Each pie’s red slice 
indicates its document’s relationship to the cluster’s 
main theme. Large pies (projects with funding of 
over US$1 million) typically have a small red slice, 
indicating that they’re probably interdisciplinary 
projects. In contrast, small projects usually involve 
fewer topics and agree more with the clusters.

Performance Optimization
Here we show how we applied parallel computing 
and a similarity grid to improve Streamit’s scal-
ability for large datasets.

GPU Acceleration
Our computational algorithm is inherently paral-
lel at each simulation step. So, we accelerate the 

(a) (b) (c)

Figure 8. NSF IIS award collections. (a) On 1 Aug. 2000, there were 95 research projects. The arrow indicates abstracts containing 
the keywords “Management” (green pie slices) and “Database” (red slices). (b) On 1 Sept. 2000, there were 172 research 
projects. We increased the two keywords’ importance so that we could observe the relevant abstracts more easily. (c) On 15 
Mar. 2002, there were 672 research projects. The arrow indicates a potential transformative proposal. When the stream further 
evolved, we observed that IIS continuously supported projects with the two keywords.
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computation on graphics hardware with a CUDA 
(Compute Unified Device Architecture) implemen-
tation similar to an N-body problem.6 N particles 
execute their force-placement algorithm simulta-
neously as individual threads distributed to a grid 
of CUDA blocks. Each thread accesses and updates 
the particle’s position from the information of the 
last step loaded into the blocks’ shared memory.

We conducted experiments using New York Times 
text streams. We ran the experiments (using a 50 × 
50 similarity grid) on both an Nvidia NVS 295 GPU 
with 2 Gbytes of memory and a 1.8-GHz Intel Core 
2 CPU with 2 Gbytes of RAM. For each frame, the 
simulation ran multiple steps with x preset at 10–4.

As Table 2 shows, the GPU performed much 
better than the CPU. On average, GPU acceleration 
achieved real-time performance of 25 to 30 fps, 
over 15 times faster than the CPU version. The 
maximum simulation time after each document 
insertion on the GPU was less than a second. This 
was sufficiently fast, considering the relatively 
slower response time for human perception and 
analysis of the visualization update.

We also tested Streamit on a synthetic dataset 
with approximately 15,000 documents and 2,000 
keywords. The results (see the last row of Table 2) 

showed that our system worked well for such a 
large text stream on the GPU.

Table 3 reports the performance of triangulation-
based dynamic clustering. With GPU acceleration, 
the cluster generation doesn’t impose much extra 
overhead on the system.

Applying a Similarity Grid
Document particles’ initial positions significantly 
affect the computational cost. We employ a simi-
larity grid to ensure that Streamit inserts new doc-
uments near similar documents. The grid divides 
the 2D visualization domain into rectangular cells 
with a given resolution. Each cell actively main-
tains a special keyword vector consisting of the 
average keyword weights computed from the cell’s 
documents. For a new document, we first compute 
its vector’s similarity to the other cells’ vectors to 
find the most similar one. We then place this doc-
ument at that cell’s center. An appropriate resolu-
tion will provide good acceleration and won’t be 
too large because of extra overhead.

Table 4 shows the average number of simulation 
steps for 7,100 documents at different grid sizes. 
A 50 × 50 grid decreased the simulation steps per 
frame to 78 percent of the steps needed without the 
grid. The execution time decreased at the same ratio.

Discussion
The performance optimization makes our system 
applicable for monitoring live streams. The New 
York Times news feed is produced continuously, 
averaging three documents per hour and achieving 
a maximum of eight documents per hour at peak 
times. The minimum interval between documents 
is approximately one minute.

A capable real-time visualization system should 
handle newly inserted items faster than this mini-
mum interval. From Table 2, the maximum sim-
ulation time on the CPU is a few seconds. With 
GPU acceleration, the handling time decreases to 
less than one second. So, our system can effectively 
handle this news stream, displaying many thou-
sands of documents for analysis. Note that an or-
dinary consumer PC and graphics card provide this 
capability.

Table 2. Streamit’s performance on a CPU and GPU for some New York Times text streams.

Document time period
No. of 

documents
No. of 

keywords

Avg. simulation time 
per frame (ms) GPU/CPU 

speedup

Max. simulation time 
(ms)

Avg. no of 
simulation steps 

per frameCPU GPU CPU GPU

13 Feb.–18 Aug. 2010 6,157 5,057 540 34 17.9 4,350 230 173

1 Aug.–31 Oct. 2006 7,100 1,059 620 41 15.1 9,070 480 177

1 July–31 Aug. 2010 10,205 2,036 986 53 15.9 11,030 610 200

Synthetic dataset 15,000 2,000 1,020 65 15.7 13,070 682 196

Table 4. The performance optimization obtained 
by employing similarity grids on a dataset of 7,100 
documents.

Similarity grid size Avg. no. of simulation steps

No grid 225

20 × 20 207

50 × 50 177

100 × 100 182

200 × 200 186

Table 3. Dynamic-clustering performance.

No. of documents

Avg. time per frame (ms) Max. time per frame (ms)

CPU GPU CPU GPU

6,157 1,270 317 2,875 334

7,100 1,546 324 3,484 334

10,205 2,544 330 5,625 341

15,000 4,247 332 9,423 356
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We’re upgrading our system to handle even larger 
text streams with advanced GPUs. It’s important 
not to overwhelm the users with the flood of 
information. Our system lets users manipulate 
the simulation speed, and they can pause the 
system and save clusters or documents for further 
investigation. Future improvements will also 
exploit unbalanced text-streaming speed, which 
occurs when texts excessively arrive during some 
events but rarely arrive under ordinary situations.

We’ll integrate Streamit with online topic-
modeling techniques and deploy it on the 

Internet to visualize text streams with frequently 
evolving topics—for example, Twitter. We’ll also 
conduct user studies to further assess the system’s 
feasibility. 
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