
34 January/February 2012 Published by the IEEE Computer Society 0272-1716/12/$31.00 © 2012 IEEE

Visualization Applications and Design Studies

Real-Time Visualization of
Streaming Text with a Force-
Based Dynamic System
Jamal Alsakran ■ Kent State University

Yang Chen and Dongning Luo ■ University of North Carolina at Charlotte

Ye Zhao ■ Kent State University

Jing Yang and Wenwen Dou ■ University of North Carolina at Charlotte

Shixia Liu ■ Microsoft Research Asia

Advanced technologies such as mobile phones
and the Internet have greatly increased the
quantity and accessibility of text docu-

ments. Devices and their users are generating mas-
sive numbers of documents at a high frequency—for
example, daily, hourly, or by-the-minute emails,
messages, and webpages. This has introduced the
urgent need for efficient storage, processing, and

analysis of such constantly grow-
ing text collections. Recently,
researchers have successfully ap-
plied visualization tools to pro-
cess and analyze text data. (For
more on this, see the sidebar.)

Visual exploration of text
streams is a challenge. First, be-
cause these streams continuously
evolve, we need visualization
aids to trace the temporal evolu-
tion of existing topics, monitor
emerging topics, and examine
the relationships between them.
Second, such visualization sys-
tems should process text streams

without prescanning an entire stream or assum-
ing a priori knowledge. Third, users should be able
to change their information-seeking focus at any

time and receive immediate feedback. Such inter-
activity is a decisive factor for a visual analytic
system in real applications in which domain users
usually don’t know the text streams in advance.
Finally, the system should scale to large volumes
of text streams and respond to their evolution in
real time.

To meet these challenges, we designed Streamit,
a dynamic visualization system for exploring text
streams.1 Figure 1 illustrates Streamit’s infra-
structure. Streamit is based on a dynamic force-
directed simulation into which text documents are
continuously inserted. A dynamic 2D display pre-
sents the incoming documents. Users can explore
documents and document clusters on the basis
of keywords or topics. They can discover emerg-
ing patterns online by monitoring the real-time
display. They can also examine historical data’s
temporal evolution through animations that play
back past streams. Streamit lets users manipulate
the display’s visual structure on the fly.

Streamit’s current version incorporates five fea-
tures that enable effective text stream visualiza-
tion. First, users can examine and interact with the
stream’s continual evolution. Second, Streamit al-
lows dynamic processing through dynamic keyword
vectors that upgrade adaptively in accordance with

Streamit lets users explore
visualizations of text streams
without prior knowledge
of the data. It incorporates
incoming documents from
a continuous source into an
existing visualization context
with automatic grouping and
separation based on document
similarities. A powerful user
interface allows in-depth data
analysis.

 IEEE Computer Graphics and Applications 35

incoming documents. Third, dynamic keyword im-
portance presents a keyword’s importance at a spe-
cific time and lets users change the importance and
see the results in real time. Fourth, Streamit uses
topic modeling and dynamic clustering to increase
its scalability. Finally, it employs a similarity grid
and parallel processing to optimize performance.

The Force-Based Dynamic System
Streamit represents each document as a mass par-
ticle moving inside a 2D visualization domain.
We define the potential energy by pairwise text
similarity between documents. Minimizing the
system’s total potential energy moves similar doc-
ument particles closer and drives away dissimilar
ones, which we achieve by attractive and repul-
sive forces between particles. Consequently, equi-
librium of the particles visually depicts the data
clusters and outliers at a particular moment. As
new particles are injected, Streamit automatically
adjusts its visual output. The dynamic behavior is
critical for reducing change blindness when new
patterns emerge.

This physical model is well suited for the contin-
uous depiction and analysis of growing document
collections. Text documents enter the system at any
time and automatically join clusters of related col-
lections. The particles in the system travel continu-
ously under the impact of new particles. So, the
visual structures gradually evolve without abrupt
changes that break the mental picture users have
already formed. Particular particles’ erratic motion
(for example, moving from one cluster to another)
might reveal outliers or significant new trends. This
provides an advantage over existing static or time-

window-based visualization approaches, which de-
pict only stationary data patterns or the sporadic
transitions between these patterns.

Particle Potential
The particles’ velocity and acceleration follow
Newton’s law of motion. Each pair of particles has
a potential energy Fij:

Φij i j ijl= − −()a l l
2
,

where a is a control constant and li and lj are the
positions of document particles pi and pj. Whereas
l li j− represents the two particles’ Euclidian

distance, lij is their ideal distance (we discuss this
more in the next section). So, this pair potential
function models the deviation of the two particles
from their ideal locations, which is achieved at
zero potential.

Particle Similarity
We determine an optimal layout by defining lij. We
obtain lij from the pairwise similarity computed
from the documents’ keywords:

lij = 1 – d(pi, pj),

where d(pi, pj) ∈ [0, 1] is the cosine similarity
between pi and pj. Documents with a high similarity
will have a smaller lij and will be clustered more
closely in the visualization.

The Force-Directed Model
A global potential function is the sum of the
pairwise energy:

Text stream

Topic modeling Text document
particles

Force-based
dynamic system

Visualization
and interaction

Dynamic
clustering

Map similarity
to force

Dynamic
keyword

importance

Compute similarity
between particles

GPU
acceleration

Similarity grid
optimization

Figure 1. The Streamit system. A dynamic 2D display presents continuously incoming text documents. Users
can explore the documents and clusters on the basis of keywords or topics in the dynamic display.

36 January/February 2012

Visualization Applications and Design Studies

V N ij

ji

l l1

1

, ,…()=
>
∑∑ Φ ,

where N is the particle number and l1, …, lN
represent these particles’ current locations.

We minimize the system’s potential to an
equilibrium state that provides a global opti-
mized placement of these particles. To achieve
this optimization, a numerical simulation mini-
mizes the global potential with a sequence of
time steps. At each time step, the minimization

leads to forces acting on each particle:

F Vi Ni=−∇ ()l l l1, ,… ,

which attracts or repulses particles from each
other. From Newton’s law, we get

Fi = miai,

where mi is the mass and ai is the particle accelera-
tion. We compute ai as

Many text visualization systems use similarity-based
projection to help users gain insight from large

text collections. James Wise and his colleagues used
multi dimensional scaling to map documents with similar
content closely to each other, thus forming “galaxies”
or “mountains” in the displays.1 Fernando Paulovich and
Rosane Minghim proposed a point placement approach
to build a hierarchy of documents and project them as
circles.2 Unlike these approaches, Streamit uses a dynamic
similarity-based projection system to depict text streams
(see the main article).

Related to our aim to handle continuous incoming text
streams, TextPool produced a visual summary that clus-
tered related terms as a dynamic textual collage.3 Unlike
Streamit, it visualized very recent stream content as a par-
tially connected graph, which was “not for analyzing any
significant portion of stream history.”3 Also, the graph rep-
resented the stream’s salient terms instead of documents.

Pak Chung Wong and his colleagues dynamically visual-
ized stream data in a moving time window using incremen-
tal data fusion.4 Their approach inserted newly arrived data
items into the existing layout when the similarity place-
ment’s error was smaller than a given threshold. Once the
error exceeded the threshold, their approach recalculated
the whole layout. Unlike Streamit, it didn’t address interac-
tive exploration and user control.

Eventriver processed incoming documents on the fly us-
ing dynamic keyword processing and an incremental text-
clustering algorithm.5 Individual documents weren’t visible
from the overview of the stream. In contrast, Streamit lets
users examine individual documents within the global tem-
poral and similarity context.

Elizabeth Hetzler and her colleagues visualized text
collections in a 2D projection space, distinguishing fresh
and stale documents.6 They applied In-Spire1 to dynamic
document flow. When new documents were added, their
approach adjusted the existing vocabulary content and
regenerated the visual results. However, their approach
didn’t show an animated transition of the view. In con-
trast, Streamit reveals the stream’s evolution in detail with
controllable transient animations.

Unlike methods that work on static high-dimensional
data, our approach visualizes text streams using force-
directed placement (FDP).7 FDP has O(N3) complexity,
which urges researchers to improve its computational per-
formance. On the other hand, improvements restrict force
calculations to a subset of the entire data, which could
lead to misleading approximated results. To ensure correct
dynamic behavior, we avoid reducing the force computa-
tion to only some of the particles. Instead, we spatially
divide the visualization domain to quickly locate the par-
ticles’ appropriate initial position. More important, we use
GPU acceleration to fully exploit the parallel nature of the
simulation algorithm, which achieves dramatic speedup.

References
 1. J.A. Wise et al., “Visualizing the Non-visual: Spatial Analysis

and Interaction with Information for Text Documents,”

Readings in Information Visualization: Using Vision to Think,

Morgan Kaufmann, 1999, pp. 442–450.

 2. F. Paulovich and R. Minghim, “Hipp: A Novel Hierarchical

Point Placement Strategy and Its Application to the Explora-

tion of Document Collections,” IEEE Trans. Visualization and

Computer Graphics, vol. 16, no. 8, 2008, pp. 1229–1236.

 3. C. Albrecht-Buehler, B. Watson, and D. Shamma, “Visualiz-

ing Live Text Streams Using Motion and Temporal Pooling,”

IEEE Computer Graphics and Applications, vol. 25, no. 3, 2005,

pp. 52–59.

 4. P.C. Wong et al., “Dynamic Visualization of Transient Data

Streams,” Proc. IEEE Symp. Information Visualization, IEEE CS

Press, 2003, p. 13.

 5. D. Luo et al., “Eventriver: An Event-Based Visual Analytics

Approach to Exploring Large Text Collections with a Tem-

poral Focus,” to be published in IEEE Trans. Visualization and

Computer Graphics.

 6. E.G. Hetzler et al., “Turning the Bucket of Text into a Pipe,”

Proc. 2005 IEEE Symp. Information Visualization (Infovis 05),

IEEE CS Press, 2005, p. 12.

 7. T. Fruchterman and E. Reingold, “Graph Drawing by Force-

Directed Placement,” Software—Practice and Experience, vol.

21, no. 11, 1991, pp. 1129–1164.

Related Work in Text Visualization

 IEEE Computer Graphics and Applications 37

a
l

m
i

i j ij
j

i
=

− −()∑2 a l l
,

which we use to update the location of pi at each
time step. When every particle no longer moves (in
numerical computing, the displacement is smaller
than a threshold x), the system’s visual layout is
optimized.

Figure 2 describes the basic computing proce-
dure, which assumes that every particle has the
same unit mass. The constant a is an empirical
parameter controlling the force (a = 0.01 in our
case studies) so that the numerical simulation is
stable. That is, no particle will exit the 2D domain
or be squeezed to the domain’s center.

Improving Interactive Exploration
and Scalability
To provide advanced data exploration, Streamit
incorporates the following techniques.

Dynamic Keyword Importance
Typically, text visualization approaches compute
d(pi, pj) by a predefined formula—for example, co-
sine similarity—from the keyword vector of pi and pj.
However, stream text collections usually span a long
period of time. For a real-world stream, one keyword
might constantly appear over a period of time and
then fade out, whereas another might frequently
pop up. Although users typically don’t have knowl-
edge about the incoming documents, they’ll change
their focus of interest as the stream evolves. So, the
definition and computation of similarity should in-
stead be a function of time and be user-adjustable.

To address this challenge, we propose computing
dynamic keyword importance in addition to d(pi,
pj), which will let users manipulate the keywords’
significance at any time. The classic cosine simi-
larity can be improved as

d p p
w I w I

w I w I
i j

ik k jk k
k

K

ik k jk k
k

,()=
()()

() ⋅ ()
=

=

∑ 1
2 2

111

n

k

K ∑∑ =

,

where Ik is the importance of keyword k, K is the
number of keywords, and wik is the weight of k in
pi. The classic cosine similarity can be considered
a special case in which Ik = 1. All the K weights
form this document’s keyword vector. Streamit
dynamically updates the current vector’s length,
so that the system can handle live data streams.

We calculate keyword weight as

w O
N
n

ik ik
k

= ∗ log2 ,

where Oik is the occurrence of k in i, N is the
total number of documents, and nk is the number
of documents in N that contain k. The inverse-
document-frequency factor N/nk favors the key-
words concentrated in a few documents of a
collection, compared to keywords with a similar
frequency that are prevalent throughout the
collection.2

Users can freely modify the keyword importance
through the visual interface, which presents
frequent keywords in an ordered list. Furthermore,
Streamit can automatically determine importance
as follows (we discuss this in more detail later):

Ik = a * Ok + b * (tek – tsk) + c * nk. (1)

Ok is the occurrence of k in the current existing
documents, tek is the last time it appears, and tsk
is the first time it appears. The equation (tek – tsk)
increases the importance for older keywords; nk
increases the importance for keywords appearing
in many different documents. Here, a, b, and c are
positive constants satisfying a + b + c = 1; users
select them to specify preferences for the three
factors. In our experiments, we used a = 0.3, b =
0.3, and c = 0.4.

Topic-Based Visualization
Streamit might have trouble revealing clusters
when the keyword space’s dimensionality is too
high, owing to the lack of data separation in such
high-dimensional spaces. Recent topic-modeling
techniques, such as latent Dirichlet allocation
(LDA),3 reduce the keyword-document space to a
much lower feature space that not only is intuitive
to interpret but also captures most of the variance
in the corpus. In particular, topic modeling
automatically represents the documents using a

Set the maximum displacement D as a large value
while D > x do
 for i = 0 to N – 1 do
 for j = i + 1 to N do
 Fi + = 2 * a(|li – lj| − lij)
 end for
 end for
 for i = 0 to N – 1 do
 ai = Fi/mi
 update this particle’s position
 update the maximum displacement D of all particles
 end for
end while

Figure 2. The dynamic-simulation algorithm. The force F is exerted on
the particles, causing them to move toward optimal distances. The
simulation stops when the displacement is no longer significant. For an
explanation of the terms, see the section “The Force-Based Dynamic
System” in the main article.

38 January/February 2012

Visualization Applications and Design Studies

set of probabilistic topics, which are described by
a probability distribution over keywords.

We use LDA to extract topics from a large doc-
ument archive that’s highly related to the text
stream to be visualized, such as its historical ar-
chives. We associate each extracted topic with a
set of keywords highly related to the stream. Dur-
ing the ongoing visualization, Streamit dynami-
cally examines whether an incoming document
contains the extracted topics according to its key-
words. It then represents the document by a vector
of the probable weights of that document’s topics.
All the aforementioned calculation, visualization,
and interactions based on keywords can be applied
to the topics.

The benefits are significant. Because there are
many fewer topics than keywords, the documents
are clustered better. Because the topics are at a
higher semantic level than the keywords, users can
more easily understand the generated clusters (we
discuss this in more detail later). For example, in-
terdisciplinary proposals covering multiple topics,
which are difficult to identify in the keyword-based
approach, can be easily detected in the topic-based
approach.

Dynamic Clustering
The distribution of document particles in the 2D
space lets users visually identify clusters of docu-
ments with similar semantics. However, on the
basis of individual particles, it’s difficult to con-
duct cluster-level operations, such as selecting all
documents in a cluster and examining a cluster’s
semantics. To address this problem, Streamit au-
tomatically discovers clusters from the evolving
geometric layouts, so that they can be explicitly
presented and manipulated through the visual in-
terface. Moreover, the visualization can display a
text stream at the cluster level to reduce clutter
and enhance scalability.

Cluster generation. At a particular moment, a group
of document particles can be considered to form a
semantic cluster with this definition:

If particles s and t are in a cluster, there must at
least exist a path between s and t that connects
a sequence of particles, s, p0, p1, …, pc, t, with a
pairwise line segment, s → p0, p0 → p1, …, pc →
t. The connected segments’ maximum length
is shorter than the predefined threshold ζ.

Here we use the single-linkage rule to define
clusters, which considers connected components
(with respect to ζ) as one cluster. We discover such
clusters directly from the 2D geometric layout. In
particular, we can apply a typical agglomerative
algorithm to partition all particles into clusters.

Starting with N particles forming N clusters,
we repeatedly merge two clusters according to the
distance between their nearest neighbors. This
straightforward approach has O(N2) complexity
and doesn’t use the particles’ geometric layout.
However, it represents the resultant clusters only
by individual particles and provides no topological
information.

Because an effective visualization should dis-
tinctly show these clusters’ spatial areas, we apply
a computational-geometry method to create a sim-
ple polygon from each cluster’s particles. Similarly
to research in spatial data mining,4 we propose a
two-step algorithm (see Figure 3):

1. Apply Delaunay triangulation for all particles
in the system.

2. In the created graph (the triangle mesh), cut the
edges that are longer than ζ.

The graph cuts partition the particles into disjoint
sets (that is, connected components) representing
the semantic clusters.

(a) (b) (c)

Figure 3. Cluster generation. (a) The original particles. (b) Delaunay triangulation results. (c) Graph cut results. The graph cuts
partition the particles into disjoint sets (that is, connected components) representing the semantic clusters.

 IEEE Computer Graphics and Applications 39

This method has a complexity of O(NlogN) +
O(E) for N particles, with O(NlogN) for Delaunay
triangulation and O(E) for browsing all E edges in
the graph cuts. In Delaunay triangulation, the max-
imal number of edges is 3N – 6, O(E) ~ O(N). So,
our method achieves O(NlogN), which is compu-
tationally faster than the agglomerative algorithm.

Cluster evolution. The created clusters merge and split
over time when new documents arrive or keyword
importance changes. Such evolution is critical for
knowledge discovery and should be tracked and
visualized.

To track cluster evolution, we give each cluster
a distinct ID; each particle carries its cluster’s ID.
To manage cluster identification in a context-aware
way, we compute a preferred ID list for each new
cluster. The list ranks the IDs of all the particles in
the cluster before the update, according to the num-
ber of the particles with the same ID. The largest
new cluster receives the top ID in its list. Then, we
iteratively choose a cluster according to its size (that
is, number of particles). Each cluster receives an ID
following the order of its preferred list, if we haven’t
assigned that ID to other clusters. If all ID choices
are occupied, a cluster receives a new ID that didn’t
appear in the previous step. So, large clusters tend
to keep their contextual information over time.

We associate each ID with a color, which we
also assign to the cluster with that ID. To avoid
color clutter, we set a threshold K of the number
of significant clusters. The largest K clusters appear

with background halos in their colors; the other
clusters don’t. (We discuss these things more in
the next section.)

Visualization
Streamit has a main window, an animation control
panel, a keyword or topic table, and a set of docu-
ment tables (see Figure 4). Refer to the video at
http://doi.ieeecomputersociety.org/10.1109/MCG.
2011.91 for a description of the visual layout and
a few examples on real datasets.

The Main Window
This window (see Figure 4a) visually presents the
particles’ movement through an animated 2D
display. A pie chart represents each particle, with
colored slices indicating keywords of interest. The
pies’ closeness reflects the documents’ similarities.
The pies’ positions dynamically change to reveal
the stream’s temporal evolution. Shades of gray
indicate document age; the older a document is,
the darker it is. Users can adjust the pies’ size and
transparency to reduce clutter that appears as the
number of documents grows.

The Animation Control Panel
Streamit buffers recent documents into a moving
time window called the buffer window, which is
larger than the window displaying the current doc-
uments. Users can play back the animation in the
buffer window to examine the buffered stream’s
temporal and semantic evolution in detail.

(a)

(c)

(d)(b)

Figure 4. Streamit’s interface. (a) The main window displays the particles’ movement. (b) The animation
control panel lets users navigate through the simulation. The (c) keyword table and (d) document table are
synchronized with the particle stream to maintain an up-to-date list of the keywords and documents.

40 January/February 2012

Visualization Applications and Design Studies

The animation control panel controls playback
(see Figure 4b). Users can move the slider to start the
animation at any point in time. They can also pause
the display to examine a moment of the stream or
change parameters such as keyword importance.

The Keyword or Topic Table
Streamit provides keyword information in a table
that’s updated dynamically (see Figure 4c). This
table lists the keywords for the displayed documents
and their frequencies, importance, and colors.

Alternatively, the table can display topic infor-
mation. In this case, it shows not only the topics
but also their significant keywords.

Document Tables
Users can click on a tab to view one of four tables
(see Figure 4d):

 ■ buffered documents,
 ■ documents displayed in the main window,
 ■ documents selected by users, and
 ■ document clusters generated by the system or
created by users.

Users can sort the documents by their authors
or time stamps. They can also click on a title to
access the document’s full text.

Labeling
Because document titles contain rich semantic in-
formation in a condensed manner, Streamit uses
them as document labels. However, displaying all
the titles could create severe clutter. So, we devel-
oped a labeling algorithm to provide the most re-
cent semantic information with user-controllable
clutter levels.

Streamit generates clusters according to a dis-
similarity threshold. In each cluster, the dissimi-
larities among the documents are less than the
threshold, and only the most recently arrived
document is labeled. By changing this threshold,
users can control the label clutter. A newly arrived
document is either assigned to an existing cluster
or forms a new cluster. So, no label will change
except that of the affected cluster. This feature
maintains temporal consistency among adjacent
displays. The newest injected document will al-
ways be labeled, which is usually desired in text
stream visualization.

Figure 4a shows the automatic-labeling results.
Streamit highlighted the newest injected document
and its label in red and highlighted the selected
documents and their labels in orange.

Labels and particles might overlap when many
documents are displayed. Streamit displays labels
on the top of particles and lets users interactively
change the transparency of the labels’ backgrounds.
An opaque background makes labels easy to read; a
semitransparent background lets users examine par-
ticles underneath the labels. Users can turn all labels
off or turn a specific label on or off by clicking on it.

The Visual Representation of Clusters
After Streamit creates clusters, triangle meshes rep-
resent their outlines. Streamit places background
halos in the mesh area for significant clusters (see
Figures 5a and 5b).

(a)

(1)

(2)

(5)

(4)

(3)

(7)

(6)

(b) (c)

Figure 5. US National Science Foundation Information and Intelligence Systems (NSF IIS) award data with topic modeling. (a) On 1
Sept. 2000, there were 172 research projects. Haloes indicate significant clusters. Red pie slices indicate topic 16 in Table 1; green
slices indicate topic 19. (b) On 15 Sept. 2001, there were 330 research projects. Clusters 1 and 2 from Figure 5a have merged into
cluster 3. Clusters 4 (mainly about topic 13) and 5 (mainly about topic 12) are new. (c) A spiral view of Figure 5b lets users examine
the clusters’ temporal trends. Clusters 6 and 7 indicate spiral views of clusters 4 and 5, respectively, in Figure 5b.

Table 1. A table of topics.

Topic no. Keywords

2 Data, Mine, Cluster, Graph, Biology, Analysis, Discovery

6 Image, Scene, Model, Recognition, Language, Shape, Speech

12 Biological, Protein, Genome, Search, Gene, Sequence, Patent

13 Video, Motion, ASL, 3D, Camera, Sign, Dance

15 Image, Speech, Haptic, Display, Impair, Auditory, Graphic

16 Query, Database, Data, XML, Stream, Edu

19 Data, Workflow, Privacy, Management, Web, Metadata

 IEEE Computer Graphics and Applications 41

Users can also examine clusters’ temporal trends
in a less cluttered spiral view.5 Figure 5c shows a
spiral view of 12 clusters. Each spiral is a time axis
located at the center of a cluster in the original
2D display. The cluster documents, displayed as pie
charts, are mapped to the spiral according to their
time stamps. The pie charts’ distribution indicates
the cluster’s temporal trends.

In the topic-modeling view, pies have two col-
ors indicating how documents are related to the
cluster’s general topics. In Figure 5c, red indicates
the number of topics the document shares with
other documents in the cluster. Yellow indicates
the number of other topics in this document.

Users can quickly examine an unknown clus-
ter through a keyword cloud triggered by selecting
the cluster. It displays the cluster’s most significant
semantic information—the titles of the most re-
cently arrived documents and the keywords with
the highest TF-IDF (term frequency-inverse docu-
ment frequency) weights.

Figure 6 shows the keyword clouds for clusters 4
and 5 in Figure 5b. The keywords appear below the
titles; a keyword’s size indicates its weight. Users
can interactively set the colors of the background,
titles, and keywords.

Interaction
Streamit lets users interactively manipulate the
visualization according to varying interests. They
can also search, track, and examine documents.

2D Display Manipulation
Streamit provides four types of 2D display
manipulation.

Adjusting keyword importance. Users can adjust the
keyword importance in the keyword table to em-
phasize specific content and receive an immediate
response (see Figure 7).

Grouping and tracking documents. Users can use the
different-colored halos to highlight selected groups
or automatically computed clusters, which promotes
easy document tracking in the dynamic display.
Figure 4a shows a cluster in orange and one in blue.

Browsing and tracking keywords. Users can assign
colors to keywords of interest to track them. In

(a)

(b)

Figure 6. Keyword clouds for clusters (a) 4 and (b) 5 in Figure 5b. The
keywords appear below the titles; a keyword’s size indicates its weight.
By clicking on a keyword, users can select all documents with this
keyword from the cluster.

(a)

(1)
(2)

(3)

(4)

(b) (c)

Figure 7. Barack Obama news. (a) On 13 Aug. 2010, there were 136 news articles. Cluster 1 indicates a group of “US and
International Affairs” articles. (b) After we increased the importance of the keyword “International Relations,” Streamit placed
articles with this keyword more closely together. Cluster 2 is a group of articles we labeled “War”; cluster 3 is the “Terrorism”
group. (c) On 18 Sept. 2010, there were 230 news articles. Cluster 3 in Figure 7b has grown considerably, and a recent news
article (cluster 4) now comes between it and cluster 2. Green indicates “Politics,” red indicates “International Relations,” yellow
indicates “Terrorism,” and blue indicates “Defense and Military.”

42 January/February 2012

Visualization Applications and Design Studies

each pie, a colored slice’s size is proportional to
its keyword’s weight in the document. Users can
investigate keyword and document relations and
track the evolution of relevant topics in this way
(see Figure 7). They can also click on a keyword
of interest in the keyword table, and halos will
highlight all documents with that keyword. Users
can sweep the keyword table in this way to find
keywords of interest.

Setting moving windows. Users can interactively
change the length of the moving window—that
is, the period to be investigated—of the currently
displayed documents.

Document Selection
Streamit offers five ways to select documents.

Manual selection. Users can manually select docu-
ments from the document tables or use rubber-
band selection by dragging the mouse. Halos
highlight the selected documents (see Figure 4a),
and the selected document table displays the docu-
ments’ information (see Figure 4d).

Example-based selection. Users can choose the cur-
rent selected documents as examples and select
documents that are within a specified distance
from them. They can easily control the range to
select similar documents.

Keyword-based selection. Users can select multiple
keywords from the keyword table (see Figure 4c).
Streamit then automatically selects and highlights
the related documents (see Figure 4a).

Cluster-based selection. Users can click the back-
ground halo of a cluster or its spiral to select all
the documents in it. They can also click a keyword
in a keyword cloud to select all the documents in
that cluster that contain the keyword.

The shoebox. Users might want to focus on temporal
evolution and examine the selected documents
later. They can easily send those documents into
the shoebox for later examination of the full text.

Three Case Studies
For these case studies, we first sorted documents
in prerecorded collections by their time stamps.
We then fed them to Streamit at intervals of a few
seconds to simulate a quickly evolving text stream.

Exploring Barack Obama News
We explored a text stream of 230 New York Times
news items about Barack Obama reported between
19 July and 18 September 2010. We gave the key-
words the tags that come with the news. In each
document, we assigned the occurrences of the key-
words a value of one. The buffer window covered
the whole stream. Streamit automatically assigned
keyword importance, using Equation 1.

Figure 7a shows the display for 13 August 2010,
which represents 136 news articles. On that date,
keywords such as “Politics and Government,” “In-
ternational Relations,” “Defense and Military,”
and “Terrorism” had high-frequency values, ac-
cording to the keyword table. We assigned them
distinct colors to track the articles characterized
by them, as Figure 7a illustrates.

We then increased the importance of “Interna-
tional Relations.” Figure 7b shows that the articles
with this keyword are closer than in Figure 7a. We
easily selected them using rubber-band selection
and found in the shoebox that they contained
keywords such as “China,” “Terrorism,” and “Af-
ghanistan War.”

We wanted to focus on “Afghanistan War” and
“Terrorism” because most of those news articles
had been recently inserted (and therefore had a
lighter shade of gray). We clicked on “Afghanistan
War” to select the related articles and created a
group named “War” for them. We highlighted
that group with pink halos (see cluster 2 in Figure
7b). We created another group for “Terrorism” in
the same way and highlighted it with orange halos
(see cluster 3 in Figure 7b).

Then, we continued to play the animation and
track these groups’ evolution. Figure 7c shows the
visualization when all the news articles were dis-
played. Cluster 3 in Figure 7b grew considerably.
Also, a recent news article (cluster 4 in Figure
7c) came between it and cluster 2 in Figure 7b.
This new cluster was related to both “Afghanistan
War” and “Terrorism.” We selected this article and
read it in full detail by clicking on the pie.

Exploring NSF Award Abstracts
We explored 1,000 US National Science Founda-
tion Information and Intelligent Systems (NSF IIS)
award abstracts funded between March 2000 and
August 2003 as a text stream. The time-varying

Users can choose the current selected
documents as examples and select

documents that are within a specified
distance from them.

 IEEE Computer Graphics and Applications 43

funding behavior is critical in understanding re-
search and administrative trends. We automati-
cally characterized each document with a set of
keywords; its corresponding pie’s size was propor-
tional to the project’s funding.

Figures 8a and 8b show the stream in two adja-
cent months. Multiple large projects started in the
second month. We paused the animation, selected
items of interest, and examined them in detail.
From the shoebox, we observed that the keywords
“Management” and “Database” appeared in many
of these project’s abstracts. We highlighted “Man-
agement” in red and “Database” in green. We also
increased their importance so that we could ob-
serve the relevant abstracts more easily (see Fig-
ure 8b). Although some abstracts contained both
keywords (indicated by the arrow in Figure 8b),
many others contained only one of them. We
pulled back the animation to the previous month
(see Figure 8a) to examine these topics’ temporal
evolution. When the stream further evolved, we
observed that IIS continuously supported projects
with these keywords (see Figure 8c).

In Figure 8c, we highlighted all projects contain-
ing “sensor” with halos. The node with a halo in-
dicated by the arrow is a potential transformative
proposal because it’s far from the other projects
with halos. We examined this abstract in detail
and found that it was a project about just-in-time
information retrieval on wearable computers.

Evaluating Topic Modeling and Dynamic Clustering
Using the NSF data from the previous case study,
this case study applied topic modeling and dynamic
clustering to increase Streamit’s scalability.

Figures 8b and 5a illustrate keyword-based and
topic-based visualization (respectively) for the
same set of documents for the same month. Many
documents that seemed unrelated to other docu-

ments in Figure 8b actually belonged to clusters
in the higher semantic level in Figure 5a. Table 1
lists topics involved in Figure 5a. Topics 16 (the
red slices in Figure 5a) and 19 (the green slices
in Figure 5a) contain “Database” (the red slices
in Figure 8b) and “Management” (the green slices
in Figure 8b). The related clusters’ semantics are
easier to understand in the topic-based visualiza-
tion than in the keyword-based visualization.

Figures 5a and 5b demonstrate dynamic cluster
evolution. Figure 5a shows a handful of clusters.
Cluster 1 is mainly about topic 15, and cluster 2 is
mainly about topic 6. In Figure 5b, these two clus-
ters merge into one larger cluster (cluster 3). Two
new clusters also appear: cluster 4 is mainly about
topic 13, and cluster 5 is mainly about topic 12.
The visual effects help users identify critical data
variations. Figure 6 shows the two new clusters’
keyword clouds.

Figure 5c displays the spiral view of the clusters
in Figure 5b. Cluster 6 represents cluster 4 in Figure
5b, and cluster 7 represents cluster 5 in Figure 5b.
The two or three most significant topic names for
a cluster appear below its spiral. Each pie’s red slice
indicates its document’s relationship to the cluster’s
main theme. Large pies (projects with funding of
over US$1 million) typically have a small red slice,
indicating that they’re probably interdisciplinary
projects. In contrast, small projects usually involve
fewer topics and agree more with the clusters.

Performance Optimization
Here we show how we applied parallel computing
and a similarity grid to improve Streamit’s scal-
ability for large datasets.

GPU Acceleration
Our computational algorithm is inherently paral-
lel at each simulation step. So, we accelerate the

(a) (b) (c)

Figure 8. NSF IIS award collections. (a) On 1 Aug. 2000, there were 95 research projects. The arrow indicates abstracts containing
the keywords “Management” (green pie slices) and “Database” (red slices). (b) On 1 Sept. 2000, there were 172 research
projects. We increased the two keywords’ importance so that we could observe the relevant abstracts more easily. (c) On 15
Mar. 2002, there were 672 research projects. The arrow indicates a potential transformative proposal. When the stream further
evolved, we observed that IIS continuously supported projects with the two keywords.

44 January/February 2012

Visualization Applications and Design Studies

computation on graphics hardware with a CUDA
(Compute Unified Device Architecture) implemen-
tation similar to an N-body problem.6 N particles
execute their force-placement algorithm simulta-
neously as individual threads distributed to a grid
of CUDA blocks. Each thread accesses and updates
the particle’s position from the information of the
last step loaded into the blocks’ shared memory.

We conducted experiments using New York Times
text streams. We ran the experiments (using a 50 ×
50 similarity grid) on both an Nvidia NVS 295 GPU
with 2 Gbytes of memory and a 1.8-GHz Intel Core
2 CPU with 2 Gbytes of RAM. For each frame, the
simulation ran multiple steps with x preset at 10–4.

As Table 2 shows, the GPU performed much
better than the CPU. On average, GPU acceleration
achieved real-time performance of 25 to 30 fps,
over 15 times faster than the CPU version. The
maximum simulation time after each document
insertion on the GPU was less than a second. This
was sufficiently fast, considering the relatively
slower response time for human perception and
analysis of the visualization update.

We also tested Streamit on a synthetic dataset
with approximately 15,000 documents and 2,000
keywords. The results (see the last row of Table 2)

showed that our system worked well for such a
large text stream on the GPU.

Table 3 reports the performance of triangulation-
based dynamic clustering. With GPU acceleration,
the cluster generation doesn’t impose much extra
overhead on the system.

Applying a Similarity Grid
Document particles’ initial positions significantly
affect the computational cost. We employ a simi-
larity grid to ensure that Streamit inserts new doc-
uments near similar documents. The grid divides
the 2D visualization domain into rectangular cells
with a given resolution. Each cell actively main-
tains a special keyword vector consisting of the
average keyword weights computed from the cell’s
documents. For a new document, we first compute
its vector’s similarity to the other cells’ vectors to
find the most similar one. We then place this doc-
ument at that cell’s center. An appropriate resolu-
tion will provide good acceleration and won’t be
too large because of extra overhead.

Table 4 shows the average number of simulation
steps for 7,100 documents at different grid sizes.
A 50 × 50 grid decreased the simulation steps per
frame to 78 percent of the steps needed without the
grid. The execution time decreased at the same ratio.

Discussion
The performance optimization makes our system
applicable for monitoring live streams. The New
York Times news feed is produced continuously,
averaging three documents per hour and achieving
a maximum of eight documents per hour at peak
times. The minimum interval between documents
is approximately one minute.

A capable real-time visualization system should
handle newly inserted items faster than this mini-
mum interval. From Table 2, the maximum sim-
ulation time on the CPU is a few seconds. With
GPU acceleration, the handling time decreases to
less than one second. So, our system can effectively
handle this news stream, displaying many thou-
sands of documents for analysis. Note that an or-
dinary consumer PC and graphics card provide this
capability.

Table 2. Streamit’s performance on a CPU and GPU for some New York Times text streams.

Document time period
No. of

documents
No. of

keywords

Avg. simulation time
per frame (ms) GPU/CPU

speedup

Max. simulation time
(ms)

Avg. no of
simulation steps

per frameCPU GPU CPU GPU

13 Feb.–18 Aug. 2010 6,157 5,057 540 34 17.9 4,350 230 173

1 Aug.–31 Oct. 2006 7,100 1,059 620 41 15.1 9,070 480 177

1 July–31 Aug. 2010 10,205 2,036 986 53 15.9 11,030 610 200

Synthetic dataset 15,000 2,000 1,020 65 15.7 13,070 682 196

Table 4. The performance optimization obtained
by employing similarity grids on a dataset of 7,100
documents.

Similarity grid size Avg. no. of simulation steps

No grid 225

20 × 20 207

50 × 50 177

100 × 100 182

200 × 200 186

Table 3. Dynamic-clustering performance.

No. of documents

Avg. time per frame (ms) Max. time per frame (ms)

CPU GPU CPU GPU

6,157 1,270 317 2,875 334

7,100 1,546 324 3,484 334

10,205 2,544 330 5,625 341

15,000 4,247 332 9,423 356

 IEEE Computer Graphics and Applications 45

We’re upgrading our system to handle even larger
text streams with advanced GPUs. It’s important
not to overwhelm the users with the flood of
information. Our system lets users manipulate
the simulation speed, and they can pause the
system and save clusters or documents for further
investigation. Future improvements will also
exploit unbalanced text-streaming speed, which
occurs when texts excessively arrive during some
events but rarely arrive under ordinary situations.

We’ll integrate Streamit with online topic-
modeling techniques and deploy it on the

Internet to visualize text streams with frequently
evolving topics—for example, Twitter. We’ll also
conduct user studies to further assess the system’s
feasibility.

Acknowledgments
US National Science Foundation grants IIS-0915528,
IIS-0916131, IIS-0946400, and NSFDACS10P1309
and the Ohio Board of Regents partly supported
this research. We thank the anonymous reviewers
for helpful reviews and Zhi Yuan for improving the
system.

References
 1. J. Alsakran et al., “Streamit: Dynamic Visualization

and Interactive Exploration of Text Streams,” Proc.
2011 IEEE Pacific Visualization Symp. (PacificVis 11),
IEEE Press, 2011, pp. 131–138.

 2. G. Salton and C. Buckley, “Term-Weighting Ap-
proaches in Automatic Text Retrieval,” Information
Processing and Management, vol. 24, no. 5, 1988, pp.
513–523.

 3. D.M. Blei, A.Y. Ng, and M.I. Jordan, “Latent Dirichlet
Allocation,” J. Machine Learning Research, Jan. 2003,
pp. 993–1022.

 4. I.-S. Kang, T.-W. Kim, and K.-J. Li, “A Spatial Data
Mining Method by Delaunay Triangulation,” Proc.
5th ACM Int’l Workshop Advances in Geographic
Information Systems (GIS 97), ACM Press, 1997, pp.
35–39.

 5. J. Carlis and J. Konstan, “Interactive Visualization
of Serial Periodic Data,” Proc. 11th Ann. ACM Symp.
User Interface Software and Technology, ACM Press,
1998, pp. 29–38.

 6. L. Nyland, M. Harris, and J. Prins, “Fast N-Body
Simulation with CUDA,” CPU Gems 3, H. Nguyen,
ed., Addison-Wesley Professional, 2007, pp. 677–696;
http.developer.nvidia.com/GPUGems3/gpugems3_
ch31.html.

Jamal Alsakran is a PhD candidate in Kent State Univer-
sity’s Department of Computer Science. His research focuses
on multidimensional and text visualization, and visual ana-
lytics. Alsakran has an MS in computer science from the
University of Jordan. Contact him at jalsakra@cs.kent.edu.

Yang Chen is a PhD student in the Department of Com-
puter Science at the University of North Carolina at Char-
lotte. His research interests include visual analytics and
information visualization. Chen has a BS in science from
Wuhan University. Contact him at ychen61@uncc.edu.

Dongning Luo is a PhD student in the Department of
Computer Science at the University of North Carolina at
Charlotte. His research interest is information visualization.
Luo has a BS in information engineering from Shanghai Jiao
Tong University. Contact him at dluo2@uncc.edu.

Ye Zhao is an assistant professor in Kent State University’s
Department of Computer Science. His research interests in-
clude natural-phenomena modeling, data visualization, and
visual analytics. Zhao has a PhD in computer science from
Stony Brook University. Contact him at zhao@cs.kent.edu.

Jing Yang is an associate professor in the Computer Sci-
ence Department at the University of North Carolina at
Charlotte. Her research interests include visual analytics
and information visualization. Yang has a PhD in computer
science from Worcester Polytechnic Institute. Contact her at
jing.yang@uncc.edu.

Wenwen Dou is a PhD candidate in computer science at
the University of North Carolina at Charlotte. Her research
interests are visual analytics and human-computer interac-
tion. Dou has a BS in telecommunications engineering from
the Beijing University of Posts and Telecommunications. Con-
tact her at wdou1@uncc.edu.

Shixia Liu is a lead researcher at Microsoft Research Asia.
Her research interests include visual text analytics and vi-
sual social-network analysis. Liu has a PhD in computer
graphics and computer-aided design from Tsinghua Univer-
sity. Contact her at shliu@microsoft.com.

Selected CS articles and columns are also available

for free at http://ComputingNow.computer.org.

Visit CG&A on
the Web at

www.computer.org/cga

