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ABSTRACT 
We are building a topic-based, interactive visual analytic 
tool that aids users in analyzing large collections of text. To 
help users quickly discover content evolution and signifi-
cant content transitions within a topic over time, here we 
present a novel, constraint-based approach to temporal topic 
segmentation. Our solution splits a discovered topic into 
multiple linear, non-overlapping sub-topics along a timeline 
by satisfying a diverse set of semantic, temporal, and visu-
alization constraints simultaneously. For each derived sub-
topic, our solution also automatically selects a set of repre-
sentative keywords to summarize the main content of the 
sub-topic. Our extensive evaluation, including a crowd-
sourced user study, demonstrates the effectiveness of our 
method over an existing baseline.   

Author Keywords 
Text visualization, topic-based, constrained clustering. 

ACM Classification Keywords 
H.5.m. Information interfaces and presentation (e.g., HCI): 
Miscellaneous. [Artificial Intelligence]: Natural language 
Processing – text analysis. 

INTRODUCTION 
To aid users in effectively gleaning insights and locating 
critical information from large collections of text docu-
ments, we have developed a topic-based, interactive visual 
analysis tool, TIARA [22]. TIARA provides two main func-
tions. First, it automatically generates a time-based visual 
text summary that conveys key topics derived from a large 
collection of text. Second, it supports a rich set of interac-
tions that allow users to further explore the created visual 
summary and examine the text collection from multiple 
aspects. Figure 1 is an output of TIARA, where each col-
ored layer represents an automatically derived topic. Each 
layer is depicted by a sequence of word clouds, summariz-
ing the topic content at each time interval. At each time 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, 
or republish, to post on servers or to redistribute to lists, requires prior 
specific permission and/or a fee. 
IUI’13, March 19–22, 2013, Santa Monica, CA USA. 
Copyright © 2013 ACM 978-1-4503-1965-2/13/03...$15.00. 

 

Figure 1. TIARA-generated visual text summary showing four topic layers.  
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point, the height of a layer encodes the “strength” of the 
topic—the number of documents covering the topic at that 
time. A user can also interact with this visualization, e.g., 
retrieving text snippets and a full document [22].    

To automatically derive the topics shown above, TIARA 
performs two key tasks: topic extraction and temporal topic 
segmentation. Topic extraction is to automatically derive a 
set of topics (e.g., sports and politics) from a text collection 
(e.g., news articles). Temporal topic segmentation is to 
break an extracted topic into a set of sub-topics along the 
time line so that a user can easily track the temporal evolu-
tion of the topic. There are many research efforts on topic 
extraction, including clustering [16, 32] and probabilistic 
topic modeling [7, 17, 24]. Currently, TIARA uses the La-
tent Dirichlet Allocation (LDA) model [7] to automatically 
extract a set of topics. Although TIARA used simple heuris-
tics to the second task, there is little in-depth research in 
this area. In this paper, we propose a systematic approach to 
temporal topic segmentation. 

Temporal topic segmentation is to split a continuous topic 
into a sequence of sub-topics over time. It further consists 
of two steps. First, it must identify a set of meaningful, 
time-based, semantic transitions to split a topic into multi-
ple, linear non-overlapping temporal segments. Second, it 
must extract a set of representative keywords to summarize 
the content of each segment. Both steps are non-trivial, 
since the system must satisfy a diverse set of constraints, 
including semantic, temporal, and visual constraints. 

Constraint 1: Capturing significant topic transitions. One 
of our goals is to help users detect how a topic evolves over 
time, in particular, identify whether and how the content of 
a topic has shifted and when. Existing time-based visual 
text summaries split a topic into multiple temporal seg-
ments by a fixed time interval (e.g., monthly) [22].  In real-

ity, however, semantic transitions of a topic may not occur 
in pre-determined, fixed time intervals (Figure 2a). In such 
cases, chopping up a topic “unnaturally” along fixed time 
points not only would miss the natural topic transitions, but 
may also result in visual redundancies. For example, seg-
ments S1 and S2 contain semantically similar content (Fig-
ure 2a). To capture natural topic transitions, a temporal 
segment boundary should be placed near where a signifi-
cant topic shift occurs (e.g., t2 in Figure 2a)     

Constraint 2: Identifying sub-topics with temporal locality. 
To effectively visualize topic transitions over time, we are 
interested in discovering sub-topics that exhibit temporal 
locality. Temporal locality of a topic is a time interval 
where the documents covering the topic appear most 
prominently. As shown in Figure 2(a), for example, sub-
topic 4 does not have temporal locality, since the docu-
ments on this topic are distributed over the entire time span. 
In contrast, the temporal locality of sub-topic 1 is time in-
terval t0–t2.   

Constraint 3: Respecting visual segment boundaries. As 
shown in Figure 1, word clouds representing topic segments 
are placed in a topic layer. To best use the available space 
in each topic layer, a spatial layout algorithm is often used 
to place the keywords in the formed peaks and valleys [22]. 
However, the temporal localities of sub-topics may not be 
aligned with these visual peaks and valleys. For example, 
the preferred temporal boundary for sub-topic 1 is t0–t2 in 
Figure 2(a), which does not line up with the visual bound-
ary t0’–t1’ in (b). If we do not respect natural visual shapes, 
the space use may not be optimal (e.g., placing the key-
words for sub-topic 1 in t0–t2 versus t0’–t1’). Moreover, 
placing a word cloud representing the same topic across 
visual boundaries will disrupt the visual flow. For example, 
sub-topic 2 spans t2–t4, across the natural visual boundary 
at t1’. Ideally, temporal and visual boundaries should be 
aligned to produce a semantically coherent and visually 
pleasing display. Using the above examples, segmenting the 
topic at t1’ is much preferable than at t2.  

To address the challenges described above, we develop an 
optimization-based approach to temporal topic segmenta-
tion, including the selection of representative keywords for 
summarizing each identified temporal segment. Our ap-
proach systematically incorporates a set of constraints, in-
cluding semantic, temporal, and visual constraints.  It then 
satisfies them simultaneously to optimize topic segmenta-
tion and keyword selection. To demonstrate the effective-
ness of our work, we have conducted both algorithmic and 
end user evaluations. Our results show significant im-
provements over an established baseline. As a result, our 
work offers two unique contributions: 

1. Our optimization-based approach to temporal topic seg-
mentation is effective, as it satisfies a diverse set of se-
mantic, temporal, and visualization constraints for creat-
ing a time-based, visual text summary.  

 

 

Figure 2. (a) Top: segmented (s1-s6) by fixed time intervals 
(t1-t6); and (b) Bottom: optimized segmentation (s1-s3). Each 
numbered circle denotes a document in a specific sub-topic. 

Session: Visualization IUI'13, March 19–22, 2013, Santa Monica, CA, USA

340



2. Our constraint-based framework is extensible, since 
it can easily incorporate additional constraints when 
needed (e.g., geo-spatial constraints to group to-
gether segments originated from the same geo-
location). 

In the rest of the paper, we first summarize related work 
before giving an overview of our tool. We then explain our 
approach in detail on temporal topic segmentation, followed 
by the evaluations. We also discuss limitations of our work 
and potential improvements before concluding. 

RELATED WORK 
Similar to our work, document segmentation [5, 10, 19, 20, 
23, 29] is to identify a set of topic transitions in a single or 
multiple document(s). There are a number of approaches to 
single document segmentation, such as detecting segmenta-
tion points by specific speech or lexical cues [29], identify-
ing lexical or semantic changes between adjacent text 
blocks [19, 20], and probabilistic topic segmentation [10, 
23]. On the other hand, multi-document segmentation takes 
multiple similar documents (e.g., multiple news articles 
from different sources reporting the same event) to find a 
set of sub-topics on the shared topic [21, 28]. Compared to 
the existing work on document segmentation, ours focuses 
on temporal segmentation of a set of heterogeneous docu-
ments, which has not been addressed before. Moreover, we 
must consider visual constraints during topic segmentation 
to ensure an effective temporal visualization of the derived-
segments.  

Similar to our goal of investigating topics along time, there 
is a rich body of work on temporal topic analysis [2, 8, 12, 
30, 31, 33]. The main purpose of these works is to incorpo-
rate time as an input to improve topic discovery results. For 
example, one effort is to discover how the topics in one 
year evolve from those of the previous year [8].  In such a 
model, documents are first grouped by a fixed time frame 
(e.g., per year). A topic model is then used to derive multi-
ple topics from the documents in each time frame. In con-
trast, our work is to identify and output proper time frames 
that best segment a topic by satisfying a set of semantic, 
temporal, and visualization constraints.  

Our work is also related to existing efforts in creating topic-
based, interactive visual text summarization systems [11, 
15, 22]. These works focus on developing visual metaphors 
and interactions that allow users to understand and explore 
the derived topics. To generate a time-based, visual sum-
mary, these systems also need to segment topics along a 
timeline. However, existing approaches are often ad hoc. 
For example, in our earlier work on topic segmentation, the 
temporal segment boundaries are mainly determined by 
visual constraints, such as the peaks and valleys of a topic 
layer [22]. If a topic layer has too few natural visual seg-
ment boundaries (the shape of the topic layer is mostly flat), 
additional segment boundaries are then introduced using 
fixed time intervals. Nonetheless, such approaches cannot 

guarantee that the derived temporal segments capture the 
correct significant topic transitions. In contrast, here we 
present a systematic approach to temporal topic segmenta-
tion by balancing a diverse set of constraints. 

SYSTEM OVERVIEW 
Figure 3 provides an overview of TIARA. The input to 
TIARA is a collection of text documents. The document 
pre-processing component first extracts the title and the 
main body text (e.g., the body of a news story) and related 
meta data (e.g., the author and time information) from each 
document. The extracted information is then sent to the 
topic summarization component, which now uses an LDA-
based approach to automatically extract a set of topics. 
Each derived topic is associated with a set of documents.  

Given a derived topic (T) and a set of documents covering 
the topic {DT

1, …, DT
M}, the sub-topic analysis component 

identifies a set of sub-topics {ST
1, …, ST

K} that satisfy a set 
of semantic, temporal, and visualization constraints. The 
interval determination component computes the temporal 
boundary for each sub-topic ST [t1, t2]. Finally, the keyword 
selection component identifies a set of keywords to 
represent each derived sub-topic. Given the derived topics 
and sub-topics, the text visualization component generates a 
time-based, interactive visual text summary. Our focus 
below is on the three components highlighted in red.  

OUR APPROACH 
We describe our approach in two parts: (1) we describe a 
three-step process that uses constraint-based topic analysis 
to identify a set of sub-topics of a given topic in a linear, 
non-overlapping temporal sequence; and (2) we present a 
keyword selection method, which selects a set of represen-
tative keywords to summarize each derived sub-topic. 

Temporal Segmentation 
There are three main steps in temporal segmentation: (1) 
constraint generation, (2) topic analysis with the generated 
constraints, and (3) temporal segment boundary determina-
tion based on the topic analysis results.  

Step 1: Generating Visual and Temporal Constraints  

 
Figure 3. System overview. 
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As mentioned earlier, our goal is to identify temporal sub-
topics that satisfy a set of semantic, temporal, and visual 
constraints. Since typical topic analysis already incorpo-
rates latent semantic constraints [7, 27, 32], there is no need 
to encode semantic constraints explicitly. We thus need 
only encode temporal and visual constraints. To incorporate 
these constraints into a constraint-based topic modeling 
process, we represent them as must-links and cannot-links 
that enforce specific relationships between two documents 
[6, 27, 32]. More specifically, must-link ensures that related 
documents be in the same sub-topic (e.g., documents A and 
B should be in the same sub-topic), while cannot-links indi-
cate that related documents should not be associated with 
the same sub-topic (e.g., documents C and D should be in 
different sub-topics).  

Given a derived topic and a set of documents D relevant to 
the topic, we add a must-link or a cannot-link between each 
document pair di and dj in D as follows: 

(1) Adding a cannot-link constraint between di and dj if 
they fall in different visual segments. Here visual seg-
ment boundaries are computed by our visualization 
component prior to topic segmentation. Since each 
document is associated with a time stamp, we use its 
time stamp to determine which visual segment the 
document falls in. Whenever possible, our goal is to 
place the keywords representing a sub-topic in a single 
visual segment instead of across the boundaries of two 
visual segments. To achieve this goal, the added can-
not-links discourage documents falling in different vis-
ual segments to form a single sub-topic.  

(2) If the temporal distance between the two documents is 
within a threshold ∂ (e.g., within a week), add a must-
link between them. These must-links encourage 
documents that are temporally close to each other to be 
in the same sub-topic. As a result, these constraints 
help discover the temporal locality of sub-topics.  

(3) Otherwise, if the temporal distance between the two 
documents is above a threshold Δ (e.g., above 6 
months), add a cannot-link between them. These 
cannot-links will prevent temporally distant documents 
from being placed in the same sub-topic. In other 
words, these links discourage the formation of sub-
topics that do not have temporal locality. 

Here, thresholds ∂ and Δ are used to define the temporal 
proximity of two documents. Currently, both values are set 
empirically based on the properties of the target dataset 
(e.g., the time span and the distribution of documents).  

Note that, multiple constraints may co-exist between a pair 
of documents. For example, two documents fall in two vis-
ual segments, so a cannot-link will be added in step (1). 
Since they are also temporally close enough, a must-link 
will also be added in step (2). In such cases, we must assign 
priority to different constraints. Currently, the priority is 
given to visual constraints. Our rationale is that the number 

of visual constraints is far fewer than the number of the 
temporal constraints. Our heuristic promotes more specific 
visual constraints and prevents them from being overpow-
ered by more general temporal constraints.  

After the must-links and cannot-links are generated, we 
employ constraint-based topic analysis to derive sub-topics 
that satisfy these constraints. 

Step 2: Performing Constraint-based Topic Analysis  

To incorporate the visual and temporal constraints specified 
above in a topic modeling process, we employ constraint-
based topic analysis. There are two families of constraint-
based topic analysis:  (a) Constrained LDA [3, 4, 24] and 
(b) constrained clustering [6, 27, 32].  Since constrained 
LDA is a relatively new effort, without extensions, none of 
the existing methods can encode the temporal and visual 
constraints that must be satisfied in our application.  We 
thus decide to use constrained clustering. 

Constrained clustering is a class of semi-supervised cluster-
ing algorithms that allows a system to incorporate addi-
tional user or application constraints during clustering. Fre-
quently, these constraints are soft constraints and not all of 
them will be satisfied in the final solution. In general, con-
strained clustering is formulated as constraint-based optimi-
zation where its objective function captures both cluster 
coherence and additional constraints. This property fits our 
goal quite well, since it ensures the semantic coherence of 
discovered sub-topics while satisfying additional temporal 
and visual constraints.    

Among all the constrained clustering algorithms, we adopt 
constrained co-clustering for two reasons. First, it is flexi-
ble as it can cluster multiple variables simultaneously. Tra-
ditional constrained clustering methods that cluster one 
random variable at a time are special cases of constrained 
co-clustering methods. Second, it is more effective in text 
analysis than one dimensional clustering, since it can clus-
ter documents and words jointly [16]. To leverage the state-
of-the-art constrained co-clustering methods, we decide to 
experiment with two top-performed algorithms but with 
very different clustering frameworks: Constrained Informa-
tion-Theoretic Co-Clustering (CITCC) [27] and Con-
strained Co-Clustering with Non-negative Matrix Tri-
Factorization (CCCTriNMF) [32].  

CITCC combines the benefits of information-theoretic co-
clustering with constrained clustering for textual documents 
[27]. It utilizes a two-sided hidden Markov random field to 
model both the document and word constraints.  In CITCC, 
the clustering process is formulated as constraint-based 
optimization with the following objective function: 
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where { }MddD ,..,1=   and { }VvvV ,..,1=  are document and 

word sets, D
)

 and V
)

 are the document and word clusters, 

mdM   and 
mdC  are the must-links and cannot-links on the 

latent document cluster label 
mdL for document md . Simi-

larly, 
ivM and 

ivC are the must-links and cannot-links on 

the latent word cluster label 
ivL for word iv ; E is the energy 

function for must-links and cannot-links.    

In contrast, CCCTriNMF [32] is matrix-factorization-based, 
constrained co-clustering. Similar to CITCC, the constraints 
are encoded as must-links and cannot-links. It finds a solu-
tion to optimize the following objective: 

)()( 222111
2

2112
0,0 21

GGTrGGTrSGGRMin TTT
GG

Θ+Θ+−
≥≥

         (2) 

where R12  is a co-occurrence document and word matrix, 
G1 and G2 are the cluster indicator matrices for document 
and word. )( 111 GGTr TΘ and )( 222 GGTr TΘ  are penalties for 
violating the must-link and cannot-link constraints of 
documents and words, and Θ1 and Θ2  are penalty matrices.  

Step 3: Determining Temporal Boundaries  

Although Step 2 derives a set of document clusters repre-
senting a set of sub-topics, the clusters have not yet been 
assigned temporal boundaries. In Step 3, we employ two 
methods to determine the temporal boundaries of derived 
sub-topics:  (1) by cluster centers and radiuses, and (2) by 
smoothed labels.    

Cluster Center and Radius-based (CR)   Based on the con-
strained clustering results, we extract the temporal center 

and the temporal radius for each derived document cluster 
(sub-topic). The temporal center c of a document cluster is 
defined as the median time stamp after sorting all the 
documents in the cluster on the time line, half of them is 
before c and half is after c. The temporal radius r of a clus-
ter is used to define a range [c-r, c+r] so that x% of the 
documents in the cluster are within that range. Normally, x 
is set empirically based on the target data set.  Figure 4 
shows the cluster centers and radiuses of two document-
clusters. 

To associate the clusters with time, we sort all the clusters 
on the time line based on their temporal centers. The seg-
ment boundary between two adjacent clusters c1 and c2 is 
determined based on their cluster radiuses. Given distance d 
between the centers of two adjacent clusters, the segment 
boundary b1,2 is decided by: 

d
rr

r
cb ×

+
+=

21

1
12,1 (3) 

Since the size of the derived clusters can be imbalanced 
(e.g., some clusters are with thousands of documents, while 
others may only have a few), we performed smoothing to 
remove clusters that are “too small to visualize effectively”. 
Here, we consider a cluster whose size is less than 10% of 
the average cluster size “too small to visualize”.    

Smoothed Label-based (SL). Our second approach is to use 
a sliding window to determine temporal boundaries of the 
derived clusters (sub-topics) [5, 13, 20]. We first directly 
sort all the documents on the timeline based on their time 
stamps. We then use a sliding window of size N to examine 
N documents at a time and identify those whose cluster 
labels do not conform to the main cluster where the major-
ity lies. Such a document is then re-assigned to the main 
cluster within the window. Based on the smoothed docu-
ment labels, a temporal boundary occurs whenever there is 
a change of cluster labels between two adjacent documents 
on the time line. In our experiments, N was set empirically 
based on the target dataset. In general, larger window size 
will result in smaller number of segments. Similar to the 
CR-based algorithm, “small clusters” may be removed dur-
ing SL segmentation due to “smoothing”. 

Selection of Representative Segment Keywords 
After Step 3, each document cluster (sub-topic) is now 
associated with a temporal boundary, which is called a 
temporal segment. For each temporal segment S, we select 
a set of topic keywords to best summarize the documents in 
the segment. The method for selecting topic keywords 
varies depending on which clustering algorithm is used. 

For CITCC, the rank of a word vi is computed using: 

∑=∈
v

vvdi
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(4) Time
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Figure 4. Cluster center and radius-based segmentation.

Session: Visualization IUI'13, March 19–22, 2013, Santa Monica, CA, USA

343



For each word vi in any of the documents in segment S, we 
compute the rank of  the word

ivr by formula (4) where 
dkd

)
  

is the document cluster associated with segment S, 
),(

vd kk vdq ))
 is the probability of a word cluster

vkv) , kv =1, 2, 

3. …, K, be associated with the document cluster
dkd

)
, and 

)|(
vki vvq ) is the probability a word vi is associated with the 

word cluster
vkv) .   

To improve efficiency, here we only focus on the most 
relevant word clusters. The relevant word clusters for a 
document cluster 

dkd
)

 are defined as those whose  

),(
vd kk vdq ))

 is above a certain threshold. 

For CCCTriNMF, the rank of a word vi is computed using: 

ik
T

v GSr
i ,2 ].[=

 (5) 

where S is the cluster center matrix in equation (2), TG2
 is 

the transpose of the word cluster indicator matrix G2, k is 
the document cluster label associated with the current seg-
ment, and i is the word index of vi. 

Based on the word ranks defined in equations (4) and (5), 
we retrieve the top-K keywords to represent each segment. 

ALGORITHMIC EVALUATION 
To test the performance of our approach, we first conducted 
a set of experiments to measure the performance of our 
algorithms in different settings. 

Data Sets 
We used two data sets in our experiments. The first data set 
is a collection of 7000+ emails over the course of two years. 
The second is a collection of 13,000+ New York Times 
articles, published during the time period of six months.  

Settings and Baseline 
TIARA first ran LDA topic modeling on each of our data 
set to derive N topics. For emails, N was set to 10. For news 
articles, N was set to 30.  

For each of the N topics, we extracted all the documents 
relevant to the topic. A document k is considered relevant to 
a topic i if its LDA-derived document topic probability k,i 
is above a threshold; or if k,i is the highest among all the 

k,j (j≠i)  if none is above the threshold. In our experiments, 
the threshold was set to 0.4 for emails and 0.3 for news 
articles.  For each LDA-derived topic, we then ran our tem-
poral segmentation algorithms. We repeated the same proc-
ess 10 times, each with a different random seed for CITCC 
and CCCTriNMF. All the results presented here are the 
averages over 10 random runs across all the N topics. 

For comparison, we used the previous version of TIARA as 
a baseline [22]. This is the first and only method known to 
us that performs temporal topic segmentation for text visu-
alization. The temporal boundaries in the baseline were 
determined first by visual segment boundaries, augmented 
with additional segments based on fixed time intervals to 
make the total number of segments the same as the docu-
ment cluster number used in CITCC and CCCTriNMF. To 
select segment keywords, the baseline computed the rank of 
a keyword in each temporal segment based on its segment-
specific tf*idf scores. Here, tf is the accumulative frequency 
of a word in all the documents in a segment. idf is com-
puted the same way as that in typical IR tasks. We used the 
top-K keywords for each segment.  

Metrics 
We used three objective metrics to evaluate our algorithms.   

Topic Completeness measures how relevant the selected 
segment keywords are to the current topic. As shown in 
Figure 1, the semantics of a topic is defined by the key-
words associated with all the segments in the topic. Thus, 
one critical role played by these keywords is to help users 
understand the semantics of a topic. A high score in topic 
completeness indicates that it is easy for a user to grasp the 
overall semantics of a derived topic through the keywords 
in all temporal segments. In contrast, a low score implies 
that the extracted segment keywords may not be a good 
representation of the topic.  

Table 1. Experimental results on two data sets. Except for visual alignment, all the numbers in bold represent significant im-
provement over the baseline. The bold numbers with * in visual alignment represent significant difference between the two seg-
mentation algorithms under the same clustering condition. 

Method Topic Completeness Topic Distinctiveness Visual Alignment 

 Email NYT Email NYT Email NYT 

Baseline .260 .426 .103 .005 .000 .000 

CITCC-CR .561 .575 .079 .111 .082 .050 

CITCC-SL .561 .573 .077 .118 .067* .043* 

CCCTriNMF-CR .440 .494 .128 .147 .097 .066 

CCCTriNMF-SL .432 .479 .115 .156 .095 .068 
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Figure 5. The impact of constraint weight on topic completeness. 

To compute topic completeness, for each topic, we compare 
the union of all the keywords in all the derived segments 
(sub-topics) with the original top 50 keywords derived by 
LDA for that topic. Based on the number of overlapping 
keywords, we compute precision to measure among all the 
keywords in the segment keyword union, the percentage of 
which also belongs to the top 50 topic keywords derived by 
LDA. We also compute recall to measure among all the top 
50 keywords from LDA, the percentage of which also ap-
pears in the union of all the segment keywords. Finally, we 
compute the F-measure, the harmonic mean of precision 
and recall, as the overall assessment for topic completeness. 
The completeness score in Table 1 is the average F-
measure over all the topics over 10 random runs.  

Topic Distinctiveness measures how one segment differs 
from another based on their associated keywords.  It helps 
us evaluate how well the temporal segments produced by 
our algorithm capture significant topic transitions. Here, we 
use the average pair-wise Jensen-Shannon (JS) divergence 
to measure the distinctiveness of two sets of keywords.  
Suppose that a topic is segmented into L parts. Each 
segment l has a normalized keyword histogram hl   s.t.  

1)( =∑ mh
m

l  where m is the word index in the vocabulary.  

Given two normalized keyword histograms hi and hj, first 
we compute the Kullback-Leibler (KL) divergence: 

∑
=

=
v

k j

i
ijiKL kh

kh
khhhD

1 )(
)(

log)()(   (6) 

Then we compute the Jensen-Shannon divergence: 

)(
2
1)(

2
1)( hhDhhDhhD jKLiKLjiJS +=  (7) 

where )(2/1 ji hhh += . The final distinctiveness score of a 
topic is the average pair-wise JS score over all the segments 
in a topic. After deriving the topic distinctiveness score for 
each topic, we then compute the average over all the topics 
over 10 random runs. 

Visual Segment Alignment measures how well the derived 
temporal segments align with visual segments. While our 
first two metrics evaluate the semantic coherence of derived 

temporal segments, this metric evaluates how well our algo-
rithm satisfies the visualization constraints. Here the visual 
segment boundaries were pre-computed by our system 
based on the shape of each topic layer. We computed the 
average distance between each visual segment boundary 
and its nearest temporal segment boundary inferred by our 
algorithms. We normalized the distance so that it is in the 
range of [0, 1]. Here, the lower the score (distance) is, the 
better the alignment is. The scores shown in Table 1 are the 
averages over all the visual segment boundaries for all the 
topics over 10 random runs. 

Results and Analysis 
As shown in Figure 5 for topic completeness, all our algo-
rithms outperformed the baseline on both data sets. The 
difference is statistically significant based on paired t-test 
(p<0.001). This result strongly suggests that by employing 
constrained clustering, our algorithm is much more capable 
of identifying topic-related keywords. Low topic complete-
ness score often means it is hard for users to grasp the se-
mantics of a topic based on the sum of the segment key-
words. Moreover, between the two clustering algorithms, 
CITCC-based methods performed better than CCCTriNMF-
based methods for topic completeness (p<0.001).   

For topic distinctiveness, CCCTriNMF-based approaches 
performed the best on both data sets. They performed sig-
nificantly better than the baseline (p<0.001). They also per-
formed significantly better than the CITCC-based methods 
(p<0.001).  Note that the topic distinctiveness scores for the 
baseline system in both data sets are quite low (Error! Ref-
erence source not found.). Since the baseline used only 
visual boundaries and fixed time intervals to do segmenta-
tion, this may cause redundancies by splitting similar con-
tent into multiple segments (e.g., S1 and S2 in Figure 2(a)). 

For visual segment alignment, since by definition, the 
alignment score for the baseline is always 0, we did not 
compare our results with the baseline. Instead, we com-
pared the performances between our two temporal align-
ment algorithms (i.e., CR versus SL) under the same cluster-
ing condition. Based on paired-t test, if used in combination 
with CITCC, the SL-based algorithm performed signifi-
cantly better than the CR-based method on both datasets 
(p<0.001). There is no statistically significant difference 
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Figure 7. The impact of constraint weight on topic distinctiveness. 

between these two approaches, if they were used in combi-
nation with CCCTriNMF.  

Since both CITCC and CCCTriNMF attempt to strike a 
balance between discovering coherent sub-topics and satis-
fying additional visual and temporal constraints, we also 
investigated how constraint weight affects the results. In 
this experiment, we varied the weights of must-links and 
cannot-links in CITCC and CCCTriNMF from 0.0000001, 
the lowest, to 100, the highest.  

Figure 5 shows the impact of weight on topic completeness 
on both datasets. As shown in Figure 5, the topic complete-
ness is mainly determined by the constrained clustering 
algorithms (i.e., CITCC or CCCTriNMF) and not sensitive 
to the two temporal segmenting algorithms (CR or SL). We 
thus show the average topic completeness for each cluster-
ing method, regardless of the segmentation algorithm used. 
As shown in Figure 5, when the weight of constraints in-
creases, the topic completeness for CCCTriNMF deterio-
rates significantly. In contrast, CITCC holds its perform-
ance much better than CCCTriNMF. 

Similarly in Figure 7, we show how constraint weight af-
fects topic distinctiveness. Here, in CCCTriNMF (the green 
lines), when the constraint weight increases, the distinctive-
ness of the segments increases slightly. In contrast, for 
CITCC (the blue lines), increasing constraint weights seems 
having little impact on email data and negative impact on 
the news data on the topic distinctiveness.  

Moreover, the impact of constraint weight can be clearly 
observed in Figure 6, which shows how visual alignment 

scores change with the constraint weights on two data sets. 
Each curve in these graphs represents a combination of 
clustering (CITCC and CCCTriNMF) and temporal seg-
mentation algorithm (CR and SL).  As shown in these 
graphics, when the weight increases, the alignment score 
decreases, indicating a better visual-temporal boundary 
alignment. This trend holds regardless of the data set, the 
clustering algorithm used, and the temporal alignment algo-
rithm used. These results are significant and demonstrate 
the effectiveness of our work in satisfying visualization 
constraints. Moreover, among the four combinations that 
we have investigated, CITCC-based algorithms outper-
formed CCCTriNMF-based ones; and the combination of 
CITCC_SL performed the best in most situations.  

USER STUDY 
In addition to our algorithmic evaluation, we also designed 
and conducted a crowdsourced user study to evaluate the 
effect of our work on user task performance. Specifically, 
we evaluated how our method aided users in their text ana-
lytic tasks against the baseline.  

Data and Method 
In this study, we used the email data set, since we need to 
compare the user task performance against the ground truth 
that we have already known. Moreover, we focused on test-
ing TIARA’s capability in helping users perform practical 
text analysis tasks. For this purpose, TIARA created two 
visualizations (Figure 8). Figure 8(a) shows the temporal 
segmentation results of a topic produced by the baseline 
[22]. Figure 8(b) displays the results of our CITCC_SL 
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Figure 6: The impact of constraint weight on visual alignment. 
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algorithm, since it outperformed others in most cases by our 
algorithmic evaluation. The displayed topic involved 155 
emails, dated from 6/1/2012 to 10/10/1012. The two visu-
alizations were the same (e.g., size, color, and shape) except 
the location and content of the keyword clouds.  

We designed two surveys, one for each visualization. The 
surveys contained identical instructions and questions ex-
cept the visualization. Each participant was first given a 
brief introduction to the task, including the data and the 
visualization. S/he was then instructed to view the visuali-
zation carefully to answer four multiple-choice questions, 
each of which is a text analytic task to gain an understand-
ing of the selected topic.  The first two questions (Q1 and 
Q2) were designed to test a user’s overall understanding of 
the derived topic. The next two questions (Q3 and Q4) 
tested a user’s understanding of specified sub-topic(s) and 
associated temporal information. 

Q1: Who is most involved in Project X in its entire course? 

Q2: What are the main sub-topics discussed in this project? 

Q3: When did event E occur? 

Q4: Which event(s) occurred during the time frame X? 

We used a between-subject design and sent 50 assignments 
for each survey on CrowdFlower [1], a crowdsourcing plat-
form. To ensure the quality, we recruited workers located in 
the U.S. only and also limited a worker to work on only one 
of the two surveys once. We collected 51 responses for the 
baseline and 54 responses for our method.   

Study Results and Analysis 

From the collected survey results, we examined two met-
rics. One is task completion time, which was computed us-
ing the job start and submission time automatically re-
corded by CrowdFlower. The other is task success rate, 
measuring the percentage of correct answers that a partici-
pant produced. Overall, the participants who used Figure 
8(b) took longer (mean = 4.8 minutes) to complete their 
tasks than those with the baseline (mean = 4.2 minutes), 
although the difference was not significant (p<0.08 based 
on independent samples t-test). However, these participants 
achieved a much higher task success rate (mean = 81% for 
our method versus 18% for the baseline). The difference is 
statistically significant (p<0.001). This means that although 
those participants spent a bit more time, they were able to 
perform the analytic tasks much better using the visualiza-
tion produced by our method.  

We further examined the effect of different tasks on the task 
success rate since our survey included two types of analytic 
tasks: (1) achieving an overall understanding of a topic (Q1 
and Q2), and (2) extracting specific aspects of a derived 
temporal sub-topic (Q3 and Q4). We found that the differ-
ence in task success rate was even greater in Type 1 task, 
83% vs. 6%, while smaller, 79% vs. 30%, for Type 2 task. 

We believe the difference is because our topic segmentation 
approach models latent semantics of sub-topics and ensures 
that extracted temporal segments are semantically coherent 
and distinctive (consistent with our topic completeness and 
topic distinctiveness evaluation). In contrast, the baseline 
relies on only a tf*idf based model, and important concepts 
(especially those appearing often in all the documents) 
might be discounted without showing up prominently in the 
display. Moreover, without a coherent topic model, the 
keywords selected by the baseline were disconnected. In 
contrast, our method selected keywords that are 
semantically and temporally meaningful.  

As demonstrated by our study, the ability to capture seman-
tic and temporal coherence of sub-topics and their represen-
tative keywords is critical to effective visual text analysis. 
Users often rely on the temporally distributed word clouds 
to interpret and differentiate sub-topics. In this study, how-
ever we did not separately test the effect of visual coher-
ence (e.g., alignment with visual segment boundaries) on 
user task performance. Further studies are needed to verify 
the impact of visual coherence on user task performance.   

DISCUSSION 
One distinct advantage of our approach is its extensibility, 
as new constraints can be easily incorporated in a topic 
analysis process. Here we briefly discuss handling of new 
types of constraints and limitations in our current work. 

Handling New Types of Constraints 
It is quite straightforward for our model to support new 
types of constraints, such as geo-spatial constraints. As-
sume that we want to gauge the opinions posted on social 

 

 

Figure 8. Two visualizations used in our user study. (a) 
Top: baseline, and (b) Bottom: created by our algorithm.  
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media (e.g., Twitter) towards the 2012 US presidential can-
didates by geographical locations over time. In this case, we 
want to group the posts not only based on their semantic 
themes and temporal localities, but also by the authors’ geo-
locations. To achieve this goal, we just need to incorporate 
must-links and cannot-links that indicate geographical rela-
tionships between two documents based on the locations of 
their authors. TIARA can then perform topic analysis while 
balancing all the constraints, including the geo-spatial con-
straints. In short, our approach is easily applicable to new 
situations where new types of constraints need to be incor-
porated in topic analysis.  

Content-based Modeling of Document Time 
To segment a topic temporally, we must obtain the temporal 
information of each document. Currently, we associate a 
document with a time stamp, which, in most cases, is the 
document creation time (e.g., when an email is sent or a 
news article is published). To capture content-based tempo-
ral information, we must then perform temporal information 
extraction for each document, e.g., inferring the temporal 
intervals of described events. Although there are multiple 
temporal reasoning models in natural language processing, 
finding a suitable tool that can handle a large collection of 
documents with high accuracy is non-trivial [25].  

Setting Model Parameters 
In our current framework, we need to set multiple model 
parameters, such as word and document cluster number, the 
size of the sliding window for SL-based segmentation, and 
weights of various constraints. Although we can use heuris-
tics to estimate the parameters for a data set based on its 
characteristics (e.g., size of the data set), in reality, the pa-
rameters will still need to be tuned empirically for each new 
dataset. Optimizing such parameters for each dataset auto-
matically is an active research topic in Machine Learning 
and beyond the scope of the paper.  

Topic Analysis with Enriched Constraint Models 
Currently, we allow the use of must-links and cannot-links 
between a pair of documents/words to specify additional 
constraints in a topic modeling process. In reality, con-
straints could be far more complex. For example, we may 
want to specify finer-grained temporal/visual constraints 
between two documents that a must-link or cannot-link 
cannot capture [26]. While there are many sophisticated 
constraint models and solvers that we could leverage, the 
key challenge is how to incorporate such models with topic 
analysis that handles complex latent semantic constraints. 
Even more challenging is how to satisfy all the constraints 
efficiently when millions of documents are involved.  

CONCLUSION 
To create an effective, time-based visual summary of text, 
in this paper, we present a constraint-based topic analysis 
approach to temporal topic segmentation. Given a topic 
derived from a set of text documents, our approach auto-

matically splits it into a set of sub-topics (segments) span-
ning over multiple linear, non-overlapping temporal inter-
vals. It does so by systematically incorporating and simul-
taneously satisfying a diverse set of constraints, including 
semantic, temporal, and visualization constraints. As a re-
sult, our approach produces semantically coherent temporal 
segments that capture significant topic transitions. More-
over, the identified temporal boundaries are aligned with 
the natural visual boundaries of a topic layer to optimize the 
use of space for displaying each word cloud, summarizing 
each sub-topic.  

We have also conducted extensive experiments to measure 
the performance of our methods by three objective metrics: 
topic completeness, topic distinctiveness, and visual 
segment alignment. Our results have demonstrated the 
significant advantage of our method over an existing 
baseline. In particular, our Constrained Information-
Theoretic Co-Clustering (CITCC) topic analysis with the 
Smoothing Label temporal alignment approach performs 
the best in most cases. Furthermore, our crowdsourced user 
study demonstrates the effectiveness of our work in aiding 
users completing practical text analysis tasks.  
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