

Information Visualization: Connecting the Abstract and Visual Worlds

Shixia Liu (刘世霞)

Internet Graphics Group,

Microsoft Research Asia

Outline

- Definition
- Criteria
- History
- InfoVis 1.0
- InfoVis 2.0
- InfoVis 3.0
- Opportunities and challenges

Outline

- Definition
- Criteria
- History
- InfoVis 1.0
- InfoVis 2.0
- InfoVis 3.0
- Opportunities and challenges

What is Information Visualization

- Use graphical representations of abstract information to facilitate
 - Explanation

. . .

- Information understanding
- Decision making

 Translation from the abstract language to the visual/intuitive language

Why InfoVis – Basic Problem

We live in a new ecology: how do you make sense of it

People are 5 times faster with the visual aid

(slide "borrowed" from PARC User Interface Research Group)

Why InfoVis - Web Ecologies

(slide "borrowed" from PARC User Interface Research Group)

Why InfoVis - Scientific Journals

Journals/person increases 10X every 50 years

Why InfoVis - Innate Human Capacity

Bad Visualization?

Good Visualization?

Outline

- Definition
- Criteria
- History
- InfoVis 1.0
- InfoVis 2.0
- InfoVis 3.0
- Opportunities and challenges

Criteria: Trustfulness (信)

Criteria: Effectiveness (达)

Criteria: Elegance (雅)

Outline

- Definition
- Objective
- History
- InfoVis 1.0
- InfoVis 2.0
- InfoVis 3.0
- Opportunities and challenges

History of Information Visualization

- InfoVis1.0 (Bronze Age: 青铜时代)
 - Hand-made drawing (Info Graphics)
- InfoVis 2.0 (Silver Age: 白银时代)
 - Information display
- InfoVis 3.0 (Golden Age: 黄金时代)
 - Visual analytics

Outline

- Definition
- Objective
- History
- InfoVis 1.0
- InfoVis 2.0
- InfoVis 3.0
- Opportunities and challenges

InfoVis 1.0: Overview

Goals

- Making invisible visible
- Communication
- Understanding
- Gaining insight

Example

Outline

- Definition
- Objective
- History
- InfoVis 1.0
- InfoVis 2.0
- InfoVis 3.0
- Opportunities and challenges

InfoVis 2.0: Overview

Basic Types of Visual Encodings

- "Retinal" properties
 - spatial position (e.g., x-y axes)
 - size
 - shape
 - color
 - orientation
 - texture
- "Gestalt" properties
 - connectivity
 - grouping (e.g., enclosure)
- Animation
 - view transitions
 - animated elements

Later in the semester we'll examine guidelines on when to apply these mappings...

Pre-attentive Processing

- < 200 250ms qualifies as pre-attentive</p>
 - eye movements take at least 200ms
 - yet certain processing can be done very quickly, implying low-level processing in parallel

 If a decision takes a fixed amount of time regardless of the number of distractors, it is considered to be preattentive. Accuracy Ranking of Quantitative Perceptual Tasks Estimated; only pairwise comparisons have been validated (Mackinlay 88 from Cleveland & McGill)

Major Topics

List

- Chart, timeline
- Tree visualization
- Graph
- Multidimensional

- Graph visualization
- Multidimensional data viz

List Visualization

Tree Visualization

Node-link diagram

Space-filling

Tree Visualization: Hyperbolic Tree

- Problems
 - Large hierarchies are everywhere
 - Scalability
- Basic idea
 - Focus + context (fisheye)
 - Lay out the hierarchy on a hyperbolic plane and map this plane onto a circular display region

Hyperbolic Tree: Demo

Tree Visualization: Treemap

Voronoi Treemap

- Treemap Problems
 - Aspect ratios uncontrolled leads to lots of skinny boxes that clutter
 - Hard to understand the hierarchical structure
- Solution
 - Voronoi treemap

Post Office: What is the area of service?

Demo

Graph Visualization

• Node-link diagram

• Matrix

• Hybrid

Clutter Reduction in Node-Link Diagram

• U.S. immigration graph with 1790 nodes and 9798 edges

Clutter Reduction Techniques

	Clutter reduction techniques	
Appearance	sampling	
	filtering	
	change point size	
	change opacity	
	clustering	
Spatial distortion	point/line displacement	
	topological distortion	
	space-filling	
	pixel-plotting	
	dimensional reordering	
Temporal	animation	

Clustering – Edge Bundling

- Visual clutter is a serious problem in huge graph visualization
- Solution
 - Geometry-based edge bundling

Inspiration

- Road-map style graphs
 - Cut straight lines into segments
 - Provide different levels of details
 - Familiar to everyone

(straight line graph)

(road-map style graph)

Method

Control Mesh

Example: Artificial Data

128 links, arranged in a circle, roughly from a source

Example: Airlines

Northwest Airlines in the U.S. 2101 links, 235 nodes

Video

Geometry-Based Edge Clustering for Graph Visualization

Weiwei Cui, Hong Zhou, Huamin Qu, Pak Chung Wong, Xiaoming Li

Hybrid Graph Visualization

- Problem
 - Huge amounts of rich context social media
 - These data involve multiple social relations and content context
- Challenges
 - Illustrate both global and local graph structures
 - Offer the multiscale and cross-scale exploration
 - Scalability

Hybrid Graph Visualization

- Traditional solutions
 - Force-directed layout
 - Matrix visualization
- New solution
 - Hybrid method

Hybrid Method: NodeTrix

- A hybrid visualization for analyzing social networks
 - Node-link diagrams: the global structure of a network
 - Adjacency matrices: better support the analysis of communities

NodeTrix

Video

Outline

- Definition
- Objective
- History
- InfoVis 1.0
- InfoVis 2.0
- InfoVis 3.0
- Opportunities and challenges

InfoVis 3.0: Motivation

- Data/Information is everywhere
 - Structured + unstructured

• Data mining is important, however, it is far from perfect

Visual Analytics in a Nutshell

Research and develop visual analytics methods and systems to facilitate individual or collective human decision making

Visual Analytics @MSRA

- Visual text analytics
- Visual social analytics
- Visual search log analytics

Topic-based Text Visualization

ACM TIST ' 12, KDD'10, TKDE' 12

InfoVis' 11

FacetAltas InfoVis' 10

Hierarchical topic evolution

ViSizer *TVCG'13*

Visual User Behavior Analytics

Search Log Analytics

RankExplorer

InfoVis'12

Given a Large Document Collection

Big Question

 What can information visualization provide to help users in understanding and gathering information from text and document collections?

Visual Text Analytics: Pipeline

Combine advanced text analytics and interactive visualization to help end users in the decision making process

Our Focus: Data

Our Focus: Data

Demo

X axis encodes time ~ 1

~10,000 emails in 2008

Interactive, Time-based Visual Email Summarization

Shixia Liu, Michelle X Zhou, Shimei Pan, Weihong Qian, Weijia Cai, Xiaoxiao Lian

IBM Research

Key Challenges

- Summarize text corpora
 - Huge amounts of complex information
 - Time-varying
- Visually explain summarization results
 - Consistent visualization
- Provide feedback or articulate their needs
 - Imperfect summarization results or varied user needs

TIARA Overview

TIARA Overview

Text Summarization

 Latent Dirichlet Allocation (LDA) model [Blei et al. 03]

- High portability
- High compaction rate for scalability
- A finer grained model

LDA Data Transformation

Experiments

Goal

 Measure which metric produces more "important" topics

- Data sets
 - Email: 8326 email messages
 - News: 34,690 documents
- Method
 - Users indicate the importance of top-K ranked topics
 - Very important, somewhat important, Unimportant

Results

• Email data (by F1 measure)

Retrieved	Top 5	Top 10
Strength	0.800 ± 0.000	0.620 ± 0.028
Distinctiveness	1.000 ± 0.000	0.780 ± 0.028
M.I.	0.760 ± 0.106	0.740 ± 0.035
T.S.	0.440 ± 0.057	0.480 ± 0.028

• News data (by F1 measure)

Retrieved	Top 5	Top 10
Strength	0.640 ± 0.057	0.68 ± 0.028
Distinctiveness	0.760 ± 0.057	0.76 ± 0.035
M.I.	0.760 ± 0.057	0.74 ± 0.035
T.S.	0.720 ± 0.069	0.70 ± 0.045

TIARA Overview

Visualizing Text: Existing Work

- Visualize text at a high level
- Visualize text at a low level
- Few on explaining advanced text analysis results

Visual Text Summary Metaphor

Data to be visualized:

- 1. Topics: $\{T_1, ..., T_j, ..., T_N\}$ and their probabilities
- 2. For each T_i , Topic keywords by time: ... {..., w_k^i , ..., }_t, ... and their probabilities over time
- 3. For each T_i , Topic strength: {..., $S^i(t)$, ...} over time

Visual encoding:

Augmented stacked graph

Enhanced Stacked Graph: Key Steps

- Computing geometry of layers
- Layer coloring
- Layer ordering
- Layer labeling

Enhanced Stacked Graph: Key Steps

- Computing geometry of layers
- Layer coloring
- Layer ordering
- Layer labeling

Byron_Infovis08

Layer Ordering

Goals

- Minimize distortion
- Maximize usable space
- Ensure semantic coherence

unordered

ordered

Layer Ordering - Comparison

Layer Ordering - Comparison

Layer Ordering - Comparison

Enhanced Stacked Graph: Layer Labeling

- Goals
 - Temporal proximity
 - Informativeness

Enhanced Stacked Graph: Layer Labeling (cont'd)

- Our approach [Liu et al. CIKM09]
 - Constraint-based space allocation
 - Particle-based layout [Luboschik et al. 08] + wordle

Enhanced Stacked Graph: Layer Labeling (cont'd)

Interacting with Visual Summary

Application Example: Healthcare

- Visualize text to facilitate analysis
 - Cause of injury
 - Reason for visit
 - Diagnosis
- Multiple fields of text data and their correlation
- Leverage structured data to help better illustrate text information
 - Gender + Cause of injury

Correlation between Structured and Text Fields

Correlation between Text Fields

CID ? Legend cut Laceration Knife Cut opn low wound Muscle Myositis Ligament lumbago defined Ankle Basketball Twisted closed strain ankle ill Fracture Accident Bike tamn. adjustment ankle ill soft low Bite Insect Animal carpal ulna radius humerus insect multipl bite low Drug Depression Abuse sprain bite fitting Burn Blisters Toxic ankle neurotic distal ulna Accident Driver Vehicle 0001 psychoses drug relat alcohol carpal bone Vertigo Dermatitis Diabetes depression abuse poisoning abuse psychological Diagnosis alcohol toxic alcohol drug relat sympt drug relat Reason for Visit epidermal venom blisters psychoses prob neurotic routine infant type Reason for Visit ee **Diagnosis** spasms spasms cramps dearee extremities motor health vehicle Edit vicalgia blisters de type functions motor evaluation supervision observation evaluation cervical neck digestive type motor vehicle type condit motor diabetes acute infection pregnancy observation spec vehicle neck hypertension due contact effect adverse accident dermatitis chronic heat complication complication diabetes Urticaria mellitus contact diabetes dermatitis dermatitis essential contact diabetes due mellitus contact personal due acute due effect mellitus mellitus dermatitis effect adverse acute essential adverse Q irritations weakness rash allergy rash dizziness fever rash skin vertigo weakness breath dizziness throat allergy vertigo weakness itching vertigo skin dizziness fever rash medication vertigo weakness breath sensation shortness fever diseases shortness allergy diseases shortness abnormalities allergy medication dizziness breath 2002-07-01 2002-11-01 2002-03-01 2002-05-01 2102-01-01 2003-01-01

Correlation between two fields, *diagnosis* and *reason for visit*

TextFlow - Problems

Understanding topic evolution in large text collections is important

- Keep abreast of hot, new, and intertwining topics

- Gain insight into the latent topics

Application Example

Application Example

Demo

TextFlow: Towards Better Understanding of Evolving Topics in Text

Example – VisWeek Publications

Example – VisWeek Publications

Challenges

• Model

Topic merging/splitting patterns

Visually convey

- Topic merging/splitting patterns in an intuitive way

Facilitate

- Analytical reasoning

Our Solution

- Leverage hierarchical Dirichlet processes
 - To model topic merging/splitting
- Augment familiar visual metaphors (rivers)
 - To convey the complex analytic results

- Support interactions at different levels
 - From global structure to local salient features

TextFlow Overview

Topic Data and Relationship Extraction

- Incremental Hierarchical Dirichlet Processes
 - Online learning of the topics in text
 - Automatically detect the topic numbers
 - Extract the merge/splitting relationships
 - Based on document topic change
 - Online compute the merging/splitting probabilities

Splitting Relationship Time t Time t+1 Predict Refine $P_{t-1}^{out}(s \to r) \stackrel{\Delta}{=} \frac{\sum_{\tau=t-T_{win}+1}^{t} \sum_{j,i} I(z_{ji}^{\tau,old} = s \& z_{ji}^{\tau,new} = r)}{\sum_{\tau=t-T_{win}+1}^{t} \sum_{j,i} I(z_{ji}^{\tau,old} = s)}$

Critical Event Extraction

- Types of critical events
 - Birth, death, merge, and split

Scoring the merging/splitting event

- Number of the branches
- Entropy of the branching probabilities

Keyword Correlation Discovery

- Extract
 - noun phrases, verb phrases, and named entities in each document

- Count
 - Co-occurrences among them

Be used to illustrate "why"

Topic Evolution as Flow

Critical Event as Glyph

Emerge, dissolve, split, and merge

Keyword Correlation as Thread

Alternatives

Keyword Correlation as Thread

Intertwine to indicate co-occurrences

Visualization Design - Consistency

Layout Algorithm

Three-level directed acyclic graph (DAG)

Adapt to Big Data - Challenges

- Generate evolving multi-branch trees as well as to model their evolution patterns over time
 - Fitness
 - Smoothness
- Handle huge document collection efficiently

Our Solution

- Bayesian online filtering framework
 - Fitness: adopt the fast Bayesian rose tree method (our work in KDD'12)
 - Smoothness: build a constraint tree

$$p(T^t | \mathcal{D}^t, T^{t-1}) \propto p(\mathcal{D}^t | T^t) p(T^t | T^{t-1})$$

• Efficiency: build a constraint tree and treat it as a tree index

Example

66,528 news articles

Our Focus: Data

RoseRiver: How Hierarchical Topics Evolve in Large Text Corpora

• Dilemma of topic numbers when handling large collections

(X-axis represents time. Each colored stripe represents a topic.)

Our Solution: Evolving Topic Trees

- Interpretable topic results
 - Real-world text corpora are naturally organized as trees
- Intuitive navigation
 - From a global overview to local details

Microsoft Research xx 화고 개주 숏院

Visualization Challenges

- Effective representation
 - Topic nodes
 - Topic relationships
- Progressive navigation
 - Obtain a full picture
 - Quickly focus on the information of interest
 - Preserve the mental-map

Case Study: Prism Scandal

- 69,867 news articles and 568,225 tweets
- June 3, 2013 to February 9, 2014
- Grouped into 36 topic trees by week
 - Tree depth: 3 9
 - Total nodes: 19 165
 - Nodes at first level: 3 20

Nicrosoft ReSeanch 波林III洲研究院

Visual Encoding

: relevance

RoseRiver

Case study on Prism data

69,867 news articles + 568,225 tweets (from Jun. 5, 2013 to Feb. 9, 2014)

Nicrosoft Reseanch 波執亚洲研究院

System Overview

Our Focus: Data

Motivation

- Relevant topics is heavily discussed in multiple sources
- Checking one source may take a part for the whole
- Gather separate pieces of information about these topics scattered in different sources and reconstruct the full picture

vicrosoft Resealich 波転IX別研究院

Image Panorama

vicrosoft Research 成软亚洲研究院

TopicPanorama

vicesearch Research 波林III洲研究院

TopicPanorama Overview

Graph Matching: Why

- A straightforward method
 - merged data + a topic graph construction method
- Deficiency
 - may fail to model the diversity across different corpora

Graph Matching: Our Solution

- Objective
 - Finding correspondence among multiple topic graphs
- Base
 - Graph-edit-distance-based matching method
- Minimize the cost of all pairwise graph matchings
 - s.t. all node mapping relationships are transitive

$$d(G_1, G_2, \dots, G_N) = \min c(f_{G_1 G_2 \dots G_N}), \quad c(f_{G_1 G_2 \dots G_N}) = \sum_{i=1}^N \sum_{j=i+1}^N c(f_{G_i G_j})$$

```
s.t. v_l \mapsto v_m, v_m \mapsto v_n \Rightarrow v_l \mapsto v_n
\forall G_i, G_j, G_k \in \{G_1, G_2, ..., G_N\}, \forall v_l \in \mathcal{V}_i, \forall v_m \in \mathcal{V}_j, \forall v_n \in \mathcal{V}_k,
```

Microsoft ReSearch 波林III 洲研究院

Graph Matching: Metagraph

Incremental Algorithm

• Allow users to interactively modify the graph matching result

 Develop an incremental graph matching algorithm based on the incremental Hungarian algorithm

Visualization

 Graph matching as densitybased graph visualization

 Topic hierarchy as stacked tree

 Coupling graph visualization with stacked tree

Layout Algorithm

Basic principle: the common parts-> the layout area of each area; the distinctive parts -> the corpus area

TopicPanorama: a Full Picture of Relevant Topics

刘世霞1 王希廷1,2 陈键飞2 朱军2 郭百宁1

1微软亚洲研究院

²清华大学

Visual User Behavior Analytics: Key Focuses

Multifaceted Behavior Analytics

Design advanced techniques to explore multifaceted behaviors and their relationships

Implicit Behavior Analytics

Design model-driven, interactive visual analytics methods to understand implicit behaviors

Explicit Behavior Analytics

Design effective, fundamental techniques and methodologies to visualize explicit behaviors

Multifaceted Behavior Analytics

Implicit Behavior Analytics

Explicit Behavior Analytics

Storytelling

A Good Storyteller

Who, When, and Where

Stories Are Complicated

- The dynamic relationships of characters
- The complex structure of scenes

Five characters in the same scene

Storyline Visualization

StoryFlow (InfoVis 2013)

• Real-time

□ Hierarchy

Level-of-detail rendering

	10/2/2012	10/5/2012	10/8/2012	10/11/2012	10/14/2012	10/17/2012	10/20/2012	10/23/2012	10/26/2012	10/29/2012	11/1/2012	11/4/2012	11/7/2012	11/10/2012
F	irst deb	oate		VP de	bate	Secon	d debat	e Thir	d debat	e	//	7		
	oung													

Objective

Strategy

Quantitative Analysis

- Intel i7-2600 CPU (3.4GHz), 8GB memory
- Comparison with TM's method

	Data		Time(s)		Crossings		Wiggles	
	#Entity	#Frame	Ours	ТМ	Ours	TM	Ours	ТМ
Star Wars	14	50	0.16	129.79	48	93	82	133
Inception	8	71	0.16	149.67	23	99	88	162
Matrix	14	42	0.16	172.47	14	43	54	94
MID	79	523	0.60	>10^5	1267	1871	831	874

Quantitative Analysis

- Intel i7-2600 CPU (3.4GHz), 8GB memory
- Comparison with TM's method

	Data		Time(s)		Crossings		Wiggles	
	#Entity	#Frame	Ours	ТМ	Ours	ТМ	Ours	ТМ
Star Wars	14	50	0.16	129.79	48	93	82	133
Inception	8	71	0.16	149.67	23	99	88	162
Matrix	14	42	0.16	172.47	14	43	54	94
MID	79	523	0.60	>10^5	1267	1871	831	874

Jurassic Park

159

Inception

160

Inception

King Lear

162

Overall Patterns (1/2)

- Three user groups focus mainly on *Election*
 - -Grassroots focus on Economy and switched frequently
 - Political figures are more focused
 - Media occasionally switched

Overall Patterns (2/2)

- Five significant peaks on *Election*
 - Third debate on foreign affairs

Significant transitions (1/3)

• Transition from *Election* to *Defense*

Significant transitions (2/3)

• Transition from *Election* to *Economy*

Significant transitions (3/3)

• Transition from *Election* to *Welfare*

"Big Picture": Our Key Focuses

Implicit Behavior Analytics: OpinionFlow

 OpinionFlow: visual analysis and exploration of implicit opinion propagation on social media

Opinion on Social Media

- Forrester 2009: 78% consumers trust peer recommendations on social media
- Facebook impact on purchase

Analyzing opinion diffusion is important

Major Challenges

Quantitative modeling of opinion diffusion

Key Focus of OpinionFlow

Visually trace and analyze opinion diffusion on social media in largescale events

System Overview

Data analysis + diffusion modeling + interactive visualization

Questions

- Question A: overview of topics and opinions
 - What are the major opinions in a large-scale event on social media?
 - How are they changing over time?

- Question B: diffusion of opinions
 - What different roles do individual users play in opinion diffusion?
 - How does the attention transition behavior of users relate to opinion diffusion?

Outline

- Definition
- Objective
- History
- InfoVis 1.0
- InfoVis 2.0
- InfoVis 3.0
- Opportunities and challenges

Massive Data - Golden Mountain

Web Images Videos New	s Dictionary Translator Maps More MSN	l Hotmail	signifearch					
必应bing" Bets	"big data"+visualization	Q	亚洲研究图					
Web	Web More v							
Choose Language	ALL RESULTS	1-10 of 287,000 results · <u>Ad</u>	lvanced					
All In Chinese	You could hover on English words to get quick translation.							
In English	Opera Solutions Selects Advanced	Visual Systems for Big Data						
RELATED SEARCHES Visualization of Data Data Visualization Tools	ELATED SEARCHES isualization of Data ata Visualization Tools isualization Tools							
Data Visualization Software Hadoop Visualization Data Visualization	Opera Solutions Selects Advanced Opera Solutions Selects Advanced Visual Via Acquire Media NewsEdge) NEW YORI 04/23/12 Opera Solutions, a global leade predictive	d Visual Systems for Big Data Systems for Big Data Visualization (Mar K, NY and WALTHAM, MA (Marketwir er in machine-learning science and	ketwire re)					
Visualization	VAST Challenge 2012: Big Data Visualization							
Visualization								
Dashboard Data Visualization	Data Visualization (Prev 12:n12 Next) But how do you visualize data out of a network containing nearly a million computers in a way that you can perceive its www.kdnuggets.com/2012/05/vast-big-data-visualization Cached page							
SEARCH TOOLS								
Turn off Hover	Big data visualization with Google	Geo						

Big Data's Hot Cousin

Data visualization: Big Data's hot cousin

Clever coders make data fun and easy, as vendors add tools to catch up

By Simon Sharwood, 26th April 2012

1

1

Moritz Stefaner calls himself a "Truth and Beauty Operator". But if you don't understand what that means, he'll translate to the safer "Freelance information Visualizer" and explain that "Large companies approach me with large data sets they want visualized. I take their data and turn it into something beautiful."

Beauty is important to Stefaner because he feels it is a way to address the problem of data overload.

NEWS

Analysts: Data visualization tools key to 'big data' analytics success

Mark Brunelli, Senior News Editor Published: 30 Nov 2011

Demand for data visualization tools is rising sharply, partly as a result of more companies seeking to gain valuable business insights through "big data" analytics initiatives. But achieving success with data visualization often requires fresh thinking about how to present information to business users, especially in big-data environments, according to data management analysts.

Keys to big data in the brain, not the computer, ea former NSA exec says

Microsoft*

• By Rutrell Yasin • Apr 26, 2012

Data visualization tools are critical to the success of big data analytics.

But achieving that success will require more than people with engineering skills; it will require input from cultural anthropologists and social scientists, a former National Security Agency executive told an audience in the Washington, D.C. metro area.

Richard Schaeffer, former information assurance director for NSA and head of the consulting firm Riverbank Associates, said April 26 in a keynote address at SAP National Security Services' Big Data Day in McLean, Va.

Big Data You Can Touch

By Rich | Published July 9, 2012

Steven Overly at the Washington Post writes that a new Startup called Augaroo aims to help companies make sense of Big Data through visualization. The company is developing a product called ZoomData that will allow businesses to create data charts and graphics on iPads and other Web-enabled devices.

Jeffrey MacMillan/Capital Business - Justin Langseth of Augaroo makes a pitch for funding at Capital

Obama's big data plans

 The Department of Energy is getting in on the big data frenzy, too, investing \$25 million to develop Scalable Data Management, Analysis and Visualization Institute, which aims to develop techniques for visualizing the incredible amounts of data generated by the department's team of supercomputers.

Obama's big data plans

 A \$2 million award for a research training group in big data that will support training for undergraduate and graduate students and postdoctoral fellows using novel statistical, graphical, and visualization techniques to study complex data.

Challenges

- Big data availability
- Data quality is not high
- Collaboration with domain
- Multiple skills
- Different evaluation systems
- Scalability is a big problem

Acknowledgements

- HKUST
 - Conglei Shi, Panpan Xu, Prof. Huamin Qu
- Georgia Tech
 - Mengdie Hu, Prof. John Stasko
- Tsinghua University
 - Jianfei Chen, Prof. Jun Zhu
- MSRA colleagues and interns
 - Weiwei Cui, Yingcai Wu, Yangqiu Song, Furu Wei, Xin Tong, Xiting Wang, Mengchen Liu, Kai Yan,...

Thanks a lot for your attention!

- Homepage: <u>http://research.microsoft.com/en-us/um/people/shliu/</u>
- Email: shixia.liu@microsoft.com